当前位置: 首页 > 专利查询>重庆大学专利>正文

一种人机结合的数控机床故障信息采集方法技术

技术编号:8347747 阅读:275 留言:0更新日期:2013-02-21 00:47
本发明专利技术公开了一种人机结合的数控机床故障信息采集方法,该方法将数控机床故障现象特征的人工采集和机器自动采集两种方式相结合,并构建以数控机床结构为核心的故障诊断知识库,用于支撑故障现象特征感知、提取、分析和存储;在数控机床出现故障时,通过“人—机”交互、“机—机”连接自动提取或两种方式相融合的方法,即可获得数控机床故障信息,也可实现采集方式的相互验证和采集信息的反馈验证。

【技术实现步骤摘要】

本专利技术涉及机械制造自动化领域,属于故障诊断系统的信息采集及处理;具体涉及。
技术介绍
数控机床结构复杂、价格昂贵,且多源多变的故障与机床相生相伴,因各种故障而产生的“停机损失”严重制约了数控机床的有效利用,造成了大量的经济损失,甚至影响到操作人员的人身安全。因此,如何采用一种方法实现对数控机床不同部位所表现的不同特性故障的有效监控,在故障出现时能准确及时地采集故障信息意义重大。不同类型不同型号的数控机床的设计原理、制造过程、运行机制都有极大的相似性,因此,利用理论知识和经验知识对数控机床进行故障信息采集在准确性方面具有明显的优势。目前,对数控机床故障诊断知识库已有研究,如专利CN201210240271. 5公开了一种面向 数控机床故障诊断与故障预报的知识库构建方法,该方法采用粗糙集与时态粗糙小波包分解相结合的方法,解决了数据不完整或缺失的问题。但此方法适用于可实现小波处理的传感器获取的故障信息,无法满足人工编辑故障信息的处理和初始采集信息准确性的判断,具有一定局限性。目前,一方面由于数控机床故障现象的表现形式不同,对于如划伤、异响、泄露等具有明显特征现象的大量故障通过人工五官感知往往更加快速准确,然而该方式所利用的人工经验未能形成有效的转化机制,使其难以形成可重用的经验知识。另一方面对数控机床的监控仍然停留在利用传感器的方式对特定部位的某些故障特征进行信息采集,如专利 US81515077A利用了传感器组构建了数控机床监控系统,用与检测刀具和工件的位置、专利 CN201120222090. O构建了一种磨床加工状态的监控系统,包括数控磨床的数控系统、声纳传感器、声发射检测系统和PLC系统,实现了磨床加工过程的监测。上述专利都未能考虑在故障信息采集过程中人工参与的重要作用,也未能提供数控机床故障信息人工采集和故障采集信息验证的功能,使得故障信息无法实现高效、准确的采集且存在大量机器无法监控的故障。
技术实现思路
针对现有技术存在的不足,本专利技术的目的是解决数控机床故障信息难以高效准确采集、理论知识和经验知识难以有效的借鉴和传统采集方法中忽略了人工参与的问题,提出了 一种基于知识的数控机床故障信息人机结合米集方法。解决上述技术问题,本专利技术采用如下技术方案,其特征在于,基于数控机床结构和故障特征知识及关系构建故障诊断知识库, 在数控机床出现故障时,使用知识库实现故障现象特征信息的人工采集、机器自动采集和人工、机器联合采集;是以数控机床结构为核心,采用“机床部位+故障特征”的故障知识表示方法,并通过数控机床相关技术资料获取知识、编辑故障知识推理规则,然后利用推理机实现知识库的完整性和一致性检验。进一步,包括如下步骤步骤I:根据数控机床结构及故障特征,构建故障诊断知识库;步骤2 :通过设置于机床上的数控系统、PLC控制系统或传感器监测,感知并判断数控机床是否故障;通过人工感知,判断机床是否出现异常;步骤3 :当机床发生故障时,若已经设置数控系统、PLC监控系统和传感器监控,则自动提取并推送故障信息到故障信息采集系统;若未设置监控且人工能感知的故障现象,则通过人工编辑的方式录入故障信息;若同时存在监控和人工感知,则同时自动提取和编辑故障信息;步骤4 :将采集到的故障信息进行同构处理,转化为知识库表达的统一知识表示形式, 然后利用推理工具进行推理,在推理输出过程中,利用故障发生次数、故障危险程度、故障验证难度等综合评价参数,实现故障推理序列知识输出的排列调整;步骤5 :根据故障知识推理输出序列,按顺序通过人工或传感的方式验证故障的其它特征,通过反复进行故障特征的匹配和检验以确定故障;步骤6 :调取已确定故障的其它信息,保存该信息到系统数据库。其中,所述知识库构建过程如下 1)数控机床故障诊断知识表示首先,解析数控机床系统、部件、组件及零件结构及关系;然后依托机床结构构建故障特征知识及关系,形成数控机床故障诊断知识库中故障知识概念及概念关系;2)数控机床故障诊断知识获取根据数控机床设计、制造、安装、测试、维修维护等技术资料,提取故障诊断知识并形成推理规则添加至步骤I)所述知识库中;同时根据不同类型或不同型号的数控机床,添加知识库实例;3)数控机床知识存储将标准化、形式化的知识按照知识存储的规则存入知识库中;4)数控机床知识库维护利用知识库编辑工具对新增知识进行添加、更改或删除,并利用推理机对修改后知识库的一致性和完整性进行检验。进一步,还包括采集的故障信息融合,在知识库中使用标准语义描述,并建立语义库;当机器自动采集故障信号时,自动设置转化方式,将机器采集到的故障信号自动转化为标准语义描述;人工采集时,选择标准语义表述采集的故障特征知识。再进一步,还包括对采集信息的反馈验证,在知识库中构建故障知识关联关系,当通过故障现象推理出故障原因时,与原因相关的其它故障现象根据关联关系同时被获取, 然后通过自动反馈、人工方式或两种方式结合进行故障现象特征的验证。相比现有技术,本专利技术具有如下有益效果I、本专利技术根据数控机床不同特性的故障现象及其感知方式的差异,采用了人机结合的方式进行故障信息采集,不仅充分利用了人工对明显故障特征现象的感知优势和机器自动采集所具有的针对性优势,实现了采集方式的互补和相互验证,并且根据知识库对局部采集信息的推理,其输出结果为采集部位和采集方式的选择提供了指导。2、本专利技术采用以知识库及知识推理的方式支撑故障信息采集,采用了数控机床故障知识的统一表达,可以有效地利用各种技术资料实现故障的排查,大大减少故障信息确认的时间,实现历史经验信息的共享和重复使用,也为人工经验直接转化为诊断维修知识创造了条件,便于人工经验知识的提炼和知识的共享。3、本专利技术采用基于知识库的故障知识推理和基于人机结合的方式进行信息反馈验证,实现了数控机床故障的快速定位和故障信息采集的准确性、完整性验证,避免了因传感器故障或未设置监控而使得故障信息无法采集的问题,在准确获取故障信息的同时,也验证了采集方式的实用性。附图说明图I为本专利技术知识库结构框图;图2为本专利技术数控机床结构及故障知识概念及关系图;图3为本专利技术故障知识特征关系图;图4为本专利技术原理框图;图5为本专利技术示例研究对象滚齿机YS3120CNC6 ; 图6为本专利技术数控机床YS3120CNC6知识库本体概念关系图;图7a为本专利技术知识库prot6g6滚齿机知识概念结构实现图;图7b为本专利技术知识库prot6g6滚齿机知识概念关系实现图;图8为本专利技术的采集流程图;图9为本专利技术的故障现象反馈筛选。具体实施例方式下面结合附图和具体实施方式对本专利技术作进一步详细说明。本专利技术人机结合的数控机床故障信息采集方法是通过构建基于数控机床结构和故障特征知识及关系的知识库,用于支撑故障现象特征信息的人工采集、机器自动采集和人工、机器联合采集。其中,所述知识库的构建方式是以数控机床结构为核心,采用基于本体的故障知识表示方法,并通过数控机床相关技术资料获取知识、编辑故障知识推理规则, 然后利用推理机实现知识库的完整性和一致性检验;知识库构建过程如下1)数控机床故障诊断知识表示首先,解析数控机床系统、部件、组件及零件结构及关系;然后依托机床结构构建故障特征知识及关系,形成数控机床故障诊断知识库中故障知识概念及本文档来自技高网
...

【技术保护点】
一种人机结合的数控机床故障信息采集方法,其特征在于,基于数控机床结构和故障特征知识及关系构建故障诊断知识库,在数控机床出现故障时,使用知识库实现故障现象特征信息的人工采集、机器自动采集和人工、机器联合采集;是以数控机床结构为核心,采用“机床部位+故障特征”的故障知识表示方法,并通过数控机床相关技术资料获取知识、编辑故障知识推理规则,然后利用推理机实现知识库的完整性和一致性检验。

【技术特征摘要】

【专利技术属性】
技术研发人员:鄢萍胡林桥童亮何彦刘飞
申请(专利权)人:重庆大学
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1