基于E类直流-直流变换器的包络跟踪电源制造技术

技术编号:8192267 阅读:257 留言:0更新日期:2013-01-10 02:51
本发明专利技术提供了一种基于E类直流-直流变换器的包络跟踪电源,它包括包络检测电路、频率转换控制电路以及E类直流-直流变换器,该E类直流-直流变换器由驱动电路、E类逆变电路、匹配网络和谐振整流电路构成。本包络跟踪电源通过包络检测得到信号包络,然后进行包络到频率的转换,利用连续频率扫描或离散频率扫描控制E类直流-直流变换器的输出功率,从而实现输出电压对原信号包络的跟踪。由于E类直流-直流变换器在其中心频率附近具有高效率,工作于很高频段,具有很大的摆率,所以本发明专利技术具有高效率、高跟踪精度等特点。

【技术实现步骤摘要】

本专利技术涉及无线通信中射频功率放大器设计中的包络跟踪技木,尤其涉及ー种基于E类直流-直流变换器的包络跟踪电源
技术介绍
随着无线通信技术向4G的迈进,用户对高数据速率的需求,同时也为了提高频谱利用率,现代通信技术普遍采用变包络的复杂调制方式。这将导致信号具有很高的峰均功率比。对于高峰均比信号,为了满足线性要求,AB类或B类等功率放大器必须工作在功率回退区域,这将导致功率放大器平均效率严重下降,即功率放大器线性和效率的折中。为了提高功率放大器在功率回退区域的效率,许多文献中提出包络跟踪 (Envelope Tracking, ET)、包络消除与恢复(Envelope Elimination and Restoration,EER)> Doherty等技术。与Doherty相比,ET技术可以实现更大功率回退区域的高效率,较宽的带宽和更好的线性;与EER相比,ET技术对电路如包络放大器、时延对齐等要求更低,实现难度较小,失真更小,所以更具有宽带、高平均效率及高线性发射机的潜力。ET技术的基本结构由包络放大器(即包络跟踪电源)和线性功率放大器构成。调制后的射频信号经包络检波后分为两路,一路是原调制信号不变,输入功率放大器放大;另一路是包络信号,经包络跟踪电源放大后作为功率放大器的漏极偏置电压。两路信号通过功率放大器实现复ムロ ο而作为ET技术中的关键部分之一,包络放大器对整体效率及线性度有着重大影响。由于包络信号与原正交信号的非线性关系,具有远大于原射频信号的带宽。用于ET的包络放大器必须满足以下要求高效率;较宽的带宽和大的摆率;较高的功率输出能力等。开关类直流-直流变换器(DC-DC Converter)如降压斩波(Buck)电路由于其很高的转换效率成为包络跟踪电源的首选方案。然而,普通的DC-DC变换器的带宽、输出摆率等都难以满足现实应用中的要求。常见的对其带宽改进的方法可分为两种一种是通过多个Buck电路实现多输入或多级直流-直流变换器,但是对带宽的改善有限;另一种是通过较宽带宽的线性放大器辅助,实现带宽与效率的折中。折中方法一定程度上改善了带宽,但使其效率却大打折扣。
技术实现思路
本专利技术要解决的技术问题,是提供一种包络跟踪电源,它具有较宽的带宽和较大的摆率,同时维持很高的效率,为包络跟踪技术提供ー种电源调制选择。本专利技术的技术方案为 一种基于E类直流-直流变换器的包络跟踪电源,包括 -包络检测电路100,检测输入的射频信号,获得该信号的包络线信号; -包络频率转换电路200,将包络线的幅值信号转换成相应的频率信号,作为E类逆变电路302中开关管的控制信号;-驱动电路301,将频率信号放大,提高其驱动能力,以控制E类逆变电路302中开关管的导通与闭合,使其工作在E类开关状态; -E类逆变电路302,将直流电源信号转换成控制信号频率所对应的交流电源信号; -匹配网络303,将E类逆变电路302的输出基波阻抗和谐振整流电路304的输入基波阻抗匹配,以达到最大功率传输; -谐振整流电路304,将交流电源信号转换成对应幅度的直流电源信号,即本电源的输出信号。所述包络频率转换电路200有三种子电路实现方式,包括连续扫频电路201、离散扫频电路202、脉宽调制(PWM)或Σ Δ调制频率控制电路203 ;三种电路可根据实际需要和电路特征、选择其中ー种对包络线信号进行频率转换。 所述连续扫频电路201由幅度调整电路、锁相环或压控振荡器组成;所述离散扫频电路202由比较量化控制电路、频率合成电路组成,该频率合成电路是锁相环或压控振荡器;所述脉宽调制(PWM)或Σ Δ调制电路203由脉宽调制器或Σ Δ调制器、相应的频率合成电路或压控振荡器和衰减电路组成。所述E类逆变电路302,其结构为E类放大器,可以是经典的E类放大器或者是带有限并联电感电容的E类放大器,该E类放大器电路中的晶体管工作在开关状态,并且晶体管的开关满足以下边界条件零电压开启(ZVS)和零电压斜率开启(ZDVS)。所述匹配网络303是将谐振整流电路304的基波阻抗匹配到E类逆变电路302的最佳基波负载。所述谐振整流电路304为E类谐振整流电路,它是E类放大器的逆结构的简化,其并联的电容吸收了整流ニ极管的寄生电容,并使ニ极管的开关都保持较低的电压斜率。本专利技术提供了一种基于E类直流-直流变换器300的高速包络跟踪电源的设计方法,利用E类直流-直流变换器300的高效率、高开关频率等特点,实现了具有大摆率、宽带和高效的包络跟踪电源。本专利技术的开关频率可以做到百兆赫兹以上,可以达到常见变包络调制信号(如WCDMA)包络带宽要求(约20MHz)的5倍以上,具有很高的动态响应速度,所以具有很大的摆率和较宽的带宽。同时E类逆变电路和E类谐振整流电路,都利用了开关管(晶体管及ニ极管)的寄生电容等寄生參数,具有很高的转换效率。通过对所用晶体管和ニ极管等主要元件的优化选择,整个包络跟踪电源可以做到高效率、宽带等效果,实现对包络イ目号的闻精度跟踪。附图说明图I为三种控制方式的包络跟踪电源的整体结构框图。图2(a)连续扫频电路实施电路基本单元示意图。图2(b)脉宽调制(PWM)或Σ Λ调制频率控制电路实施基本单元示意图。图3为离散扫频电路频率切换控制部分与驱动电路结合的一种实施方式电路示意图。图4为本实施方式E类逆变电路部分的电路示意图。图5为用于说明通过改变频率来调整输出功率的设计频率为150MHz的理想经典E类逆变电路输出功率和效率随着输入信号变化示意图。图6(a)为本实施方式E类谐振整流电路示意图。图6 (b)为用于说明实现匹配网络的E类谐振整流电路的基波等效输入阻杭。图7为N=3时离散扫频方式下对正弦包络跟踪效果波形示意图。具体实施例方式下面结合附图和具体实施方式对本专利技术作进ー步的详述。图I为本具体实施方式的整个包络跟踪电源的结构框图。本专利技术是一种基于E类直流-直流变换器的包络跟踪电源,包括 -包络检测电路100,检测输入的射频信号,获得该信号的包络线信号。本具体实施方式中,包络检测电路100可选用常用的包络检波器。 -包络频率转换电路200,将包络线的幅值信号转换成相应的频率信号,作为E类逆变电路302中开关管的控制信号。-驱动电路301,将频率信号放大,提高其驱动能力,以控制E类逆变电路302中开关管的导通与闭合,使其工作在E类开关状态。本具体实施方式中,驱动电路301可用运放或こ类放大器等实现。-E类逆变电路302,其结构如E类放大器,将直流电源信号转换成控制信号频率所对应的交流电源信号。-匹配网络303,将E类逆变电路302的输出基波阻抗和谐振整流电路304的输入基波阻抗匹配,以达到最大功率传输。-谐振整流电路304,将交流电源信号转换成对应幅度的直流电源信号,即本电源的输出信号。其中,上述驱动电路301、E类逆变电路302、匹配网络303和谐振整流电路304组成的E类直流-直流变换器300为整个包络跟踪电源的核心部分,实现由固定的直流电压到所需的直流电压(或近似直流电压)的转换。整个包络跟踪电源的输入信号是原始射频信号输入,它经过包络检测电路100检波后得到射频信号的包络信号,然后经过包络频率转换电路200输出对应的频率信号,用来控制E类本文档来自技高网
...

【技术保护点】
一种基于E类直流?直流变换器的包络跟踪电源,其特征在于,包括:?包络检测电路(100),检测输入的射频信号,获得该信号的包络线信号;?包络频率转换电路(200),将包络线的幅值信号转换成相应的频率信号,作为E类逆变电路(302)中开关管的控制信号;?驱动电路(301),将频率信号放大,提高其驱动能力,以控制E类逆变电路(302)中开关管的导通与闭合,使其工作在E类开关状态;?E类逆变电路(302),将直流电源信号转换成控制信号频率所对应的交流电源信号;?匹配网络(303),将E类逆变电路(302)的输出基波阻抗和谐振整流电路(304)的输入基波阻抗匹配,以达到最大功率传输;?谐振整流电路(304),将交流电源信号转换成对应幅度的直流电源信号,即本电源的输出信号。

【技术特征摘要】

【专利技术属性】
技术研发人员:游飞吕亚博代志江童仁彬丁炫谢树义何松柏
申请(专利权)人:电子科技大学
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1