微量润滑切削区流场数值模型构建方法技术

技术编号:7917771 阅读:174 留言:0更新日期:2012-10-25 02:51
一种微量润滑切削区流场数值模型构建方法,包括以下步骤:建立切削二维或三维模型;对模型进行网格划分;将完成网格划分的模型导入仿真软件,在定义入口条件和出口条件后使用稳态流场计算方法进行仿真;建立运动模型和切削热模型并转化为仿真软件可识别语言;选择合适的喷嘴模型和壁膜边界模型;将上述模型导入稳定流场并使用非稳态计算方法进行仿真,从而得到速度场分布、压力场分布、温度场分布、雾滴直径与雾滴速度。本发明专利技术能够取得微量润滑在切削时对切削区的流场影响,以及微量润滑对工件和刀具内部的温度场影响,为微量润滑系统设置提供依据,同时可用于微量润滑系统参数优化。

【技术实现步骤摘要】

本专利技术涉及的是一种切削加工的润滑方法,具体涉及的是一种微量润滑(MinimumQuantity Lubrication)切削区流场数值模型构建方法,属于机械切削加工

技术介绍
微量润滑切削技术通常是指压缩空气携带被压缩空气破碎成微米级的润滑油进入切削区域的一种润滑方法。润滑油雾滴在工件与刀具之间形成润滑膜从而减小刀具与工件之间的摩擦,而且压缩空气通过热交换和润滑油通过蒸发吸热,所以切削区域的温度能够得到降低,减小刀具磨损,提高切削性能。但是微量润滑研究和实际应用还需要解决许多问题,特别是如下问题需要新的方法和手段进行研究1、微量润滑的作用机理需要进一步研究,包括微量润滑切削时的润滑膜厚度、润滑油渗透性、最佳润滑条件和不同加工方法 下的润滑性能差异。2、切削中最佳润滑油使用量的确定,微量润滑解决的一个核心问题就是有效降低润滑油使用量而减小资源浪费,而不同的工件、刀具、切削参数都将导致最佳润滑油使用量的改变。3、微量润滑切削加工中切削参数的优化,切削区域的润滑膜只有在合适的切削参数下才能形成,只有考察切削区域的温度和压力等参数才能取得良好的润滑效果。由于微量润滑的压缩空气与润滑油雾滴在切削区域的流场还不能通过现有科技手段进行检测,所以通过测量手段来得到微量润滑在流场区域的分布为选取最佳微量润滑参数的微量润滑方法提供依据较不可行。关于微量润滑切削技术的研究大部分都集中在微量润滑对于切削力、切削温度、刀具磨损、工件加工表面精度的影响,而对于微量润滑在切削区域的流场分布的研究较少。西班牙 University of the Basque Country UPV/EHU 的 L. N. L6pez de Lacalle 等人对加入微量润滑的铣削进行建模仿真。采用通用流体有限元软件Pamf low建立基于V0F( Volumeof Fluid) 二相流模型的微量润滑渗透模型。此模型通过将多相流的流体假设为一种流体而共用一个方程组,每一相的体积分数在整个计算域内被追踪。模型只包括刀具和微量润滑而忽略了工件和切屑,因此切削过程的切削热同样未加考虑。由于模型考虑铣刀转动对微量润滑流体的影响,所以动网格技术用于流场网格的重构,在重构过程中检查转动引起的网格畸变并进行修正。仿真所得结果揭示微量润滑流体相对高速运转的铣刀具有良好的渗透性,但是与实际切削情况相去甚远,该模型并不涉及对于刀具磨损相关的切削区流场分析,所以不能为切削分析提供太多信息。相对而言微量润滑参与切削时的切削区流场仿真更加复杂。首先,切削是一种动态过程,工件与刀具之间的相对运动是产生切削过程中一系列问题的根源,所以需要根据实际切削参数建立工件、切屑与刀具的动态模型配合网格自适应,模拟实际切削过程。然后,冷却液对于切削过程中的抑制作用是评价冷却液性能的一项重要指标,所以微量润滑的仿真过程必须考虑切削热的产生。而切削热包括三个方面1.在切削第一变形区由于切屑剪切过程产生的热量;2.刀具前刀面与切屑摩擦产生的热量;3.刀具后刀面与已切削表面摩擦产生的热量。最后,考虑到润滑油所占的体积只有不到压缩空气的10%,所以微量润滑在仿真中所使用的模型应该为离散相模型(Discrete Phase Model,简称DPM),所用的计算模型为欧拉-拉格朗日方程,连续相(即压缩空气)的数学计算采用欧拉方程,而分散相(即润滑油雾滴)的数学计算采用拉格朗日方程。同时连续相与分散相可以交换动量、质量和能量,通过双向耦合求解将两项结合在一起。而且DPM模型在边界设定中与二相流具有不同情况,所以合适的流场模型将会影响仿真结果。经过现有文献检索,至今未发现微量润滑切削区流场数值模型构建的公开报道。
技术实现思路
本专利技术的目的在于克服上述现有技术的不足,包括现有测量手段的局限和仿真模型的缺失,提供一种,将切削过程中将会对微量润滑在切削区产生影响的四个因素工件与刀具的相对运动,切削过程的切削热产生,边界模型和适合微量润滑的DPM模型加入仿真模型,从而最大程度地模拟切削过程,并通过改变仿真的输入参数可以模拟不同切削参数和润滑参数下的微量润滑切削区流场分布,为实际微量润滑系统参数选择提供依据。 为实现上述目的,本专利技术是通过以下技术方案实现的一种,其特征在于,包括以下步骤第一步,建立切削二维或三维模型,该模型包括喷嘴、工件、刀具和切屑;第二步,对第一步所建模型划分网格,并对网格进行细化且定义切削区的线网格尺寸;第三步,将完成网格划分的模型导入仿真软件,首先使用稳态流场计算方法仿真只有空气质量入口和压力出口的仿真模型;第四步,建立刀具切削工件生成切屑的运动模型,并将该运动模型编写成仿真软件可识别的计算机语言格式;第五步,建立微量润滑条件下的切削热模型,该切削热模型包括热源且与运动模型进行耦合,将该切削热模型编写成仿真软件能够识别的计算机语言格式;第六步,选择合适的喷嘴模型作为微量润滑雾滴生成源,该喷嘴模型必须选择与实际相符的喷嘴类型;第七步,选择合适的工件与刀具边界条件,即选择能够符合微量润滑切削区情况的壁膜边界模型;第八步,确定上述模型后,在得到稳定的连续相结果中加入离散相模型,并相应加入运动模型、切削热模型、喷嘴模型和壁膜边界模型,使用非稳态模型进行计算;第九步,取得仿真结果,重点考察微量润滑条件下切削区域的流场分布,包括速度场分布、压力场分布、温度场分布、雾滴直径和雾滴速度,为微量润滑系统设置提供依据,同时用于微量润滑系统参数优化。所述的切削热模型中的热源包括第一变形区剪切热、刀具前刀面与切屑摩擦热以及刀具后刀面与加工表面摩擦热。本专利技术解决了切削区的流场特性不易测量的技术问题,与现有的微量润滑切削仿真相比,本专利技术充分综合工件与刀具的相对运动、切削过程的切削热产生、边界模型和适合微量润滑的DPM模型四方面因素,使用仿真技术最大程度地模拟不同切削参数和润滑参数下的微量润滑切削区流场分布,取得微量润滑在切削时对切削区的流场影响,包括速度场分布、压力场分布、温度场分布和雾滴直径,同样可以得到微量润滑对工件和刀具内部的温度场影响,从而为微量润滑系统设置提供依据,同时可用于微量润滑系统参数优化。附图说明图I为本专利技术的运动模型、切削热模型、喷嘴模型和壁膜(Wall-film)边界模型在三维建模中的示意图。 图2为本专利技术的微量润滑切削区仿真结果的速度场、压力场、温度场、雾滴速度和雾滴直径分布不意图。具体实施例方式本专利技术所述将切削过程中将会对微量润滑在切削区产生影响的四个因素工件与刀具的相对运动,切削过程的切削热产生,边界模型和适合微量润滑的DPM模型加入仿真模型,从而最大程度地模拟切削过程,并通过改变仿真的输入参数可以模拟不同切削参数和润滑参数下的微量润滑切削区流场分布。其包括以下步骤第一步,建立切削二维或三维模型,该模型包括喷嘴、工件、刀具和切屑。第二步,对所建立的切削二维或三维模型划分网格,由于重点考察切削区的流场分布,所以对切削区网格进行细化并定义切削区的线网格尺寸,在接下来的运动模型中线网格的尺寸不再改变而会随着模型一起运动,只有二维的面网格和三维的体网格才会随着模型运动而进行自适应调整。第三步,将完成网格划分的模型导入仿真软件,首先使用稳态流场计算方法仿真只有空气质量入口和压力出口的本文档来自技高网
...

【技术保护点】
一种微量润滑切削区流场数值模型构建方法,其特征在于,包括以下步骤:第一步,建立切削二维或三维模型,该模型包括喷嘴、工件、刀具和切屑;第二步,对第一步所建模型划分网格,并对网格进行细化且定义切削区的线网格尺寸;第三步,将完成网格划分的模型导入仿真软件,首先使用稳态流场计算方法仿真只有空气质量入口和压力出口的仿真模型;第四步,建立刀具切削工件生成切屑的运动模型,并将该运动模型编写成仿真软件可识别的计算机语言格式;第五步,建立微量润滑条件下的切削热模型,该切削热模型包括热源且与运动模型进行耦合,将该切削热模型编写成仿真软件能够识别的计算机语言格式;第六步,选择合适的喷嘴模型作为微量润滑雾滴生成源,该喷嘴模型必须选择与实际相符的喷嘴类型;第七步,选择合适的工件与刀具边界条件,即选择能够符合微量润滑切削区情况的壁膜边界模型;第八步,确定上述模型后,在得到稳定的连续相结果中加入离散相模型,并相应加入运动模型、切削热模型、喷嘴模型和壁膜边界模型,使用非稳态模型进行计算;第九步,取得仿真结果,重点考察微量润滑条件下切削区域的流场分布,包括速度场分布、压力场分布、温度场分布、雾滴直径和雾滴速度,为微量润滑系统设置提供依据,同时用于微量润滑系统参数优化。...

【技术特征摘要】

【专利技术属性】
技术研发人员:陈明姜立刘志强安庆龙
申请(专利权)人:上海交通大学
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1