一种煤电厂组合式耐腐蚀热管烟气余热回收系统技术方案

技术编号:7571883 阅读:231 留言:0更新日期:2012-07-15 05:13
本实用新型专利技术公开了一种煤电厂组合式耐腐蚀热管烟气余热回收系统,该系统包括依次通过管道配合连接的锅炉、除尘器、引风机、增压风机、组合式耐腐蚀热管换热器组件、脱硫塔与烟囱。本实用新型专利技术所述煤电厂组合式耐腐蚀热管烟气余热回收系统,可以克服现有技术中节能性差、环保性差、成本高、可靠性差与占用空间大等缺陷,以实现节能性好、环保性好、成本低、可靠性好、占用空间小与应用范围广的优点。(*该技术在2021年保护过期,可自由使用*)

【技术实现步骤摘要】

本技术涉及煤电厂节能环保
,具体地,涉及一种煤电厂组合式耐腐蚀热管烟气余热回收系统
技术介绍
近年来,我国能源需求呈刚性增长,受国内资源保障能力和环境容量制约以及全球性能源安全和应对气候变化影响,资源环境约束日趋强化,节能减排面临的形势十分严峻。根据我国“十二五”规划提出的节能减排目标的要求。在节能方面,到2015年,全国万元国内生产总值能耗下降到0. 869吨标准煤(按2005年价格计算),比2010年的1. 034 吨标准煤下降16%,“十二五”期间,实现节约能源6. 7亿吨标准煤。在减排方面,到2015年, 全国化学需氧量和二氧化硫排放总量分别控制在2347. 6万吨、2086. 4万吨,比2010年分别下降8% ;全国氨氮和氮氧化物排放总量分别控制在238. 0万吨、2046. 2万吨,比2010年分别下降10%。国家“十二五”规划目标的实现,需要全国各行各业积极应对,深入挖潜,加大节能减排工作力度,尤其是作为能耗大户的电力行业。而电力行业锅炉燃煤的消耗在整个国民能耗中占有很大的比例,正因为如此,各种能量回收设备在锅炉燃烧系统中越来越广泛的被应用。目前,从锅炉的各项热损失中可知,排烟热损失是其中最大的一项,一般为锅炉效率的5、%,而且随着锅炉运行年限的增加,此项损失甚至更高,可达1(Γ15%左右。因此,烟气余热回收技术是节能效益最为明显、见效最快的节能技术。它将排烟损失中部分能量回收利用,以此来提高锅炉效率,进而提高能源利用率,降低生产成本,同时也是减少污染物排放,保护环境最直接、经济的手段。另外,根据国家环保政策的要求,燃煤锅炉必须具备烟气脱硫系统。迄今为止,国内外已应用的有数种烟气脱硫技术,不过大型火电厂机组烟气脱硫均以石灰石一石膏湿法技术为主,由于其脱硫效率高、稳定性好的特点,且已成为我国燃煤电厂烟气脱硫的首选工艺。但是,石灰石一石膏湿法脱硫工艺中运行温度较低,离锅炉设计排烟温度较远,通常在脱硫系统中需要采用喷水的方式来冷却烟温,这样不仅损失了排烟温度与脱硫温度之间烟气的热量,而且增加了电厂的用水量,同时也增加了净烟气中的水汽含量,烟气排放量的增加还影响电厂周围环境的环保状况;由以上分析可知,在燃煤锅炉进行湿法脱硫的过程中,锅炉出口的烟气热量基本都没有回收利用,而且增加了运行能耗和环保排放的压力, 因此,需要一种烟气冷却技术来解决余热回收和环保排放的问题。可见,根据电力行业燃煤锅炉实际运行的这种状况,需要研发一种烟气冷却余热回收技术,来回收锅炉设计排烟温度到脱硫工艺温度之间的热量,从而达到电厂节能减排和降低环境污染的要求。因此,采用烟气低温余热回收技术,充分利用烟气进吸收塔前的余热,已经成为电力系统当前节能减排的一个重要课题。在火电厂燃煤锅炉烟气系统脱硫塔前的区域,进行烟气低温余热回收利用,烟气温度可降到酸露点以下,因此烟气余热回收设备的耐腐蚀或黏结积灰的影响是主要需要解决的技术问题。目前,在该区域应用的烟气余热回收技术,通常是采用经过改进的低压省煤器技术,即螺旋翅片管换热器技术;以及因其系统连接和循环方式不同而演变出的其他应用技术,如锅炉烟气深度冷却余热回收系统(具体可参见公开号为CN101709879A的专利文献)。此项技术典型的系统,如图1所示,包括烟囱1、FGD出门挡板2 (即双百叶窗式挡板门)、1号吸收塔3、锅炉4、除尘器5、引风机6、FGD进门挡板7 (即双百叶窗式挡板门)、 增压风机8、烟气冷却器9、氧化风机10、低压缸11、发电机12、JD6 (即#6低压加热器)13、 JD7 (即#7低压加热器)14、JD8 (即#8低压加热器)15、凝结水泵16与凝汽器17 ;锅炉4、 除尘器5、引风机6、FGD进门挡板7、增压风机8、烟气冷却器9与1号吸收塔3,依次通过管道配合连接;氧化风机10、1号吸收塔3、FGD出门挡板2与烟囱1,依次通过管道配合连接; 中压缸、低压缸11、凝汽器17、凝结水泵16、JD8 15、JD7 14、JD6 13与JDl (即#1低压加热器),依次通过管道配合连接,发电机12配合连接至低压缸11转子;在JD8 15与JD7 14 之间,引出一条管道,连接至烟气冷却器9 ;并从烟气冷却器9,引出另一条管道,连接至JD7 14与JD6 13之间;在JD8 15与烟气冷却器9之间,装有第一阀门;在JD7 14与JD6 13之间,装有第二阀门;在烟气冷却器9与JD6 13之间,装有第三阀门。在图1所示的系统中,是在增压风机8和1号吸收塔3前的烟道内,增加一套气一液式螺旋翅片管换热器(烟-水换热器),其水侧并联在汽机回热系统某级低压加热器上,从某级低加进口引出部分或全部冷凝水,送往烟水换热器吸收排烟热量,降低排烟温度,而自身却被加热、升高温度后再返回低压加热器系统,在该级低加的出口与剩下的凝结水汇集后进入到下一级低加。由于其系统并联在加热器回路之中,代替部分低压加热器的作用,所以也是汽轮机热力系统的一个组成部分(参见上海外高桥第三发电厂烟气余热回收项目总结报告)。上述技术是在传统的低压省煤器的基础上研发出来的,主要从螺旋翅片管的材质和加热凝结水温度方面,进行了以下改进⑴采用耐腐蚀材料ND钢(即09CrCuSb钢)作为受热面管材。但实践证明,ND钢耐腐蚀寿命仅为普通碳钢的3、倍,并且由于在复杂的烟气环境中,不仅存在S03_、S04_、还存在F—、CF,这样多酸腐蚀的条件下,ND钢只能延缓腐蚀,不能抵御腐蚀;⑵加热凝结水从酸露点之上,调整到了酸露点下与水露点上之间的低速腐蚀区域。此区域温度区间较小,当锅炉变工况运行时,凝结水流量调节较大,容易偏离整个回热加热系统的最佳经济工况,造成余热回收的节能效益下降,同时凝结水的分流过量也容易影响低压加热器的运行安全。另外,当电厂燃用煤种发生变化时,低速腐蚀区域将偏离设计工况,原设计凝结水取水点的温度变化范围很难适应工况调整。而且,低压省煤器技术,仍有一些问题存在,例如⑴低压省煤器技术加热工质单一。由于进入低压省煤器系统的工质温度有一定的要求,调节余量较小,选取工质时,只能从汽机凝结水系统在某台低压加热器进口或出口的位置上引出凝结水作为水源。也就是说,低压省煤器无法直接加热其他工质,将烟气的热量回收到电厂其他更需要余热的系统中;⑵低压省煤器技术利用的是显热传递方式回收热量,比潜热传递回收效率要低几个数量级,同时加热工质的进口温度要求较高,由于冷媒的高入口温度限制了换热设备的传热温差,因此,在回收热量相同的情况下,较小的传热温差,较低的传热效率决定了需要设计时采取较大的换热面积,不仅增大了布置空间,还增加了设备投资;⑶低压省煤器为了节省布置空间,仍然采用螺旋翅片管,而在烟气结露区域难免有黏结积灰的存在,这些积灰通常会在翅片间隔处沉积难以清理,即使安装吹灰装置也很难清除,久而久之,必将影响换热效率,还会导致管壁周围酸浓度增大,腐蚀加剧增强;⑷低压省煤器是由进、出口联箱连接的蛇型管排,为一个整体式换热器,如果管束有一点发生腐蚀泄漏,整个系统必须立即停止工作,若整个系统又没有及时隔离,将会使大量的汽水漏入烟气系统当中,致使后续设备积灰、腐蚀,风机负荷增大,电耗增加,严重时导致脱硫系统无法运行。综上所述,本文档来自技高网...

【技术保护点】

【技术特征摘要】

【专利技术属性】
技术研发人员:陈建勤鄢常亮卢鑫赵铬轩宋春雪
申请(专利权)人:辽宁赛沃斯节能技术有限公司
类型:实用新型
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1
相关领域技术