全固态电池制造技术

技术编号:7371433 阅读:200 留言:0更新日期:2012-05-27 16:33
一种全固态电池,其形成为使正电极和负电极中的至少其一的电极活性材料层具有如下组成分布:由电极活性材料层的一部分中包含的电极活性材料的体积(Va(部分))相对于部分电极活性材料层中包含的固体电解质材料的体积(Ve(部分))之比(Va(部分)/Ve(部分))所表示的局部体积比随电极活性材料层的所述部分在电极活性材料层的厚度方向上从固体电解质层的界面向集流器的界面接近而增加,并且所述电极活性材料层的空隙率随所述电极活性材料层的所述部分在所述厚度方向上从所述固体电解质层的界面向所述集流器的界面接近而增加。

【技术实现步骤摘要】

本专利技术涉及具有降低的扩散电阻和改善的速率特性的全固态电池
技术介绍
近年来,随着信息相关设备和通信设备如个人计算机、摄录机和移动电话的快速发展,开发用作信息相关设备或通信设备的电源的电池变得重要。此外,在机动车行业等中,已经在进行用于电动车辆或混合型动力车辆的高功率和高容量电池的开发。目前,在多种电池中,锂电池由于高能量密度而变成关注的焦点。目前的市售锂电池采用包含易燃有机溶剂的电解质溶液。因此,必须安装在短路时抑制温度升高的安全装置,或改进用于防止短路的结构或材料。与此相反,用固体电解质层替代电解质溶液的全固态锂电池在电池中不使用易燃的有机溶剂。为此,认为全固态电池的安全装置得以简化,并且全固态电池在制造成本或生产力方面优异。通常,在这种全固态锂电池的电极中,为了提高锂离子电导率,混合并使用固体电解质材料。例如,日本专利申请公开2009-146657 (JP-A-2009-146657)描述了一种固体电解质锂二次电池,其中正电极、固体电解质层(SE)和负电极集流器被顺序层叠在板状正电极集流器的每个表面上。在正电极中,形成包含正电极活性材料粉末和固体电解质粉末的正电极混合物层。原因如下形成层结构,使得插入与正电极或负电极具有高附着力的固体电解质,由此降低因充电和放电导致的正电极和负电极的膨胀和收缩而引起的电池翘曲、 变形和开裂。此外,全固态锂电池例如需要具有进一步高的容量和高的功率以用作车载电池, 并且用于使电池具有高容量的方法是增加电极活性材料层的厚度。然而,存在如下问题由于电极活性材料层的厚度增加,所以该方法导致电阻增加,因此,输出特性劣化。作为解决上述问题的措施,例如,日本专利申请公开2006-210003 (JP-A-2006-210003)描述了一种包括集流器和活性材料层的电池电极。活性材料层包含活性材料,并且形成在集流器的表面上。在电池电极中,活性材料的比表面积从活性材料层的表面朝向集流器增加。这意图以如下方式提高电池的耐久性活性材料的比表面积从活性材料层的表面朝向活性材料层的集流器增加,以减少活性材料层的厚度方向上的不均勻反应,甚至在高功率条件下充电和放电期间也是如此。此外,日本专利4055671描述了一种用于非水电解质电池的电极。在包含全固态聚合物电解质或聚合物凝胶电解质作为电解质并且形成在集流器上的电极活性材料层中,电极具有浓度梯度,使得除电解质之外的固体内含物的浓度从电极活性材料层的表面朝向集流器增加。日本专利申请公开2010-27530 (JP-A-2010-27530)描述了一种包括集流器和形成在集流器表面上的活性材料层的电池电极。在电池电极中,活性材料层中包含的活性材料的浓度从集流器朝向活性材料层的表面增加。需要进一步降低扩散电阻和进一步提高速率特性的全固态电池
技术实现思路
本专利技术提供一种具有降低的扩散电阻和提高的速率特性的全固态电池。本专利技术的一个方面提供一种全固态电池。所述全固态电池包括正电极,其包括正电极集流器和正电极活性材料层,其中所述正电极活性材料层形成在所述正电极集流器上并且包含正电极活性材料和固体电解质材料;负电极,其包括负电极集流器和负电极活性材料层,其中所述负电极活性材料层形成在所述负电极集流器上并且包含负电极活性材料和固体电解质材料;和固体电解质层,其形成在所述正电极和所述负电极之间,其中所述正电极和所述负电极中的至少其一的所述电极活性材料层具有如下组成分布由所述电极活性材料层的一部分中包含的所述电极活性材料的体积相对于所述电极活性材料层的所述部分中包含的所述固体电解质材料的体积之比表示的局部体积比,随所述电极活性材料层的所述部分在所述电极活性材料层的厚度方向上从所述固体电解质层的界面向所述集流器的界面接近而增加,和所述电极活性材料层的空隙率随所述电极活性材料层的所述部分在所述电极活性材料层的厚度方向上从所述固体电解质层的界面向所述集流器的界面接近而增加。根据本专利技术的所述方面,所述电极活性材料层具有随所述电极活性材料层的所述部分在所述电极活性材料层的厚度方向上从所述固体电解质层的界面向所述集流器的界面接近而增加的局部体积比。通过这样做,所述电极活性材料在与集流器相邻的一侧增加, 使得可以容易地形成电子导电通路,并且所述固体电解质材料在与所述固体电解质层相邻的一侧增加,使得可以形成厚的锂离子导电通路。通过这样做,可以获得能够增加电流幅值并具有降低的扩散电阻和提高的速率特性的全固态电池。此外,所述电极活性材料层的空隙率随所述电极活性材料层的所述部分在所述电极活性材料层的厚度方向上从所述固体电解质层的界面向所述集流器的界面接近而增加。通过这样做,在与具有大量电极活性材料的所述集流器相邻一侧显著的所述电极活性材料的膨胀和收缩可以被空隙吸收,因此可以改善所述全固态电池的耐久性。在上述方面中,所述正电极和所述负电极中的至少其一可以是正电极,和所述电极活性材料层可以是正电极活性材料层。在上述方面中,所述固体电解质材料可以是基于硫化物的固体电解质材料。所述基于硫化物的固体电解质材料是软的,因此所述基于硫化物的固体电解质材料容易变形, 以易于形成离子导电通路。在上述方面中,所述固体电解质材料可以具有颗粒形状。这是因为,在所述电极活性材料层中,空隙可以形成在所述固体电解质材料颗粒之间,并且同时所述电极活性材料的膨胀或收缩可以被所述空隙吸收。根据本专利技术的所述方面,有利地,可以提供一种具有降低的扩散电阻和提高的速率特性的全固态电池。附图说明下面将参考附图描述本专利技术示例性实施方案的特征、优点、和技术以及工业意义, 附图中类似的附图标记指类似的要素/元件,其中图1是显示根据本专利技术一个实施方案的全固态电池的一个实例的示意性横截面图2是显示通过模拟逾渗理论获得的电极活性材料颗粒密度和连接的电极活性材料颗粒百分比之间的关系的图;图3是显示电池密度和电池耐久性之间的关系的图;图4是显示根据第一实施例、第一对比例和第二对比例的全固态电池的速率特性的评价结果的图;和图5是显示根据第一实施例、第一对比例和第二对比例的全固态电池的扩散电阻的测量结果的图。具体实施例方式在下文,将详细描述根据本专利技术一个实施方案的全固态电池。根据本专利技术所述实施方案的全固态电池包括正电极,其包括正电极集流器和正电极活性材料层,其中所述正电极活性材料层形成在所述正电极集流器上并且包含正电极活性材料和固体电解质材料;负电极,其包括负电极集流器和负电极活性材料层,其中所述负电极活性材料层形成在所述负电极集流器上并且包含负电极活性材料和固体电解质材料;和固体电解质层,其形成在所述正电极和所述负电极之间,其中所述正电极和所述负电极中的至少其一的所述电极活性材料层具有如下组成分布由所述电极活性材料层的一部分中包含的所述电极活性材料的体积(Va(部分))相对于所述电极活性材料层的所述部分中包含的所述固体电解质材料的体积(K部分))之比(Va(部分)/\(部分))表示的局部体积比,随所述电极活性材料层的所述部分在所述电极活性材料层的厚度方向上从所述固体电解质层的界面向所述集流器的界面接近而增加,和所述电极活性材料层的空隙率随所述电极活性材料层的所述部分在所述电极活性材料层的所述厚度方向上从所述固体电解质层的所述界面向所述集本文档来自技高网
...

【技术保护点】

【技术特征摘要】
...

【专利技术属性】
技术研发人员:上野幸义西野典明土田靖
申请(专利权)人:丰田自动车株式会社
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1
相关领域技术