大孔有机/无机纳米复合树脂的制备方法技术

技术编号:7241183 阅读:136 留言:0更新日期:2012-04-11 18:40
本发明专利技术涉及一种大孔有机/无机纳米复合树脂的制备方法,主要解决以往大孔有机/无机纳米复合树脂制备中无机纳米材料分散不均匀的问题。本发明专利技术通过采用一种大孔有机/无机纳米复合树脂的制备方法,先将所需量的单体、共聚单体、纳米材料、引发剂配成溶液A;再用超声波发生器将A溶液超声5~30分钟,得到溶液B;然后将所需量的助剂一配成重量百分比浓度为0.5~2%的水溶液C;将溶液C、溶液A及助剂二混合,聚合得到大孔有机/无机复合微球;再对复合微球进行傅氏反应及季胺化,得到大孔有机/无机纳米复合树脂的技术方案较好的解决了该问题,可用于环氧乙烷催化水合的工业生产中。

【技术实现步骤摘要】

本专利技术涉及一种。
技术介绍
碳纳米管自1991年被日本NEC公司的饭岛(Iijima)发现以来,就因其优异的电、 磁、光、热等性能而在高聚物功能复合材料的制备方面有很好的应用前景,是近年来国际科学研究的热点。碳纳米管与聚合物的复合可以实现组元材料的互补或加强,是碳纳米管稳定性的有效途径。然而实际的碳纳米管是团聚并相互缠结在一起的,要发挥其增强聚合物的特性就必须打散团聚结构。另外碳纳米管表面光滑且不溶于一般溶剂,碳纳米管加入聚合物并非简单的混合就可以达到预想效果。因此如何实现碳纳米管的分散和增强碳纳米管和聚合物之间的物理化学作用也就成为复合材料最终性能的关键。碳纳米管/聚合物复合材料的制备方法主要有溶液共混法、熔融共混法、原位聚合法。文献CN200310109478.X用延迟原位聚合的方法制备了含碳纳米管的离子交换树脂,该树脂具有良好的耐高温耐溶胀特性;文献CN200410052720. 9,CN200410066631. X, CN200410066632. 4,CN200410067626. 0用改进的原位聚合方法合成了纳米复合材料,并将其用作制备亚烷基二元醇的催化剂,取得了良好的催化效果。但是,上述纳米复合材料在制备过程中都存在着一个共同的缺点,就是在聚合物制备的预聚合阶段,碳纳米管的分散都使用了机械搅拌的方式,这样碳纳米管的分散时间长且分散效果不理想。
技术实现思路
本专利技术所要解决的技术问题是在现有技术中在聚合物制备的预聚合阶段,碳纳米管的分散都使用了机械搅拌的方式,这样碳纳米管的分散时间长且分散效果不理想。提供一种,该方法具有碳纳米管的分散时间短,且分散效果好的优点。为了解决上述技术问题,本专利技术采用的技术方案如下一种,包括以下步骤(1)将所需量的单体、共聚单体、纳米材料、引发剂配成溶液A ;(2)用超声波发生器将A溶液超声5 30分钟,得到溶液B ;(3)将所需量的助剂一配成重量百分比浓度为0. 5 2%的水溶液C ;(4)将溶液C、溶液A及所需量的助剂二混合,控制搅拌速度以控制产物的粒径,同时逐步升温至70 90°C,反应2 8小时;再升温到90 100°C,反应2 8小时;反应结束后,倾倒出上层液体,用热水洗涤,然后过滤,烘干得到复合微球;(5)向复合微球内加入复合微球重量的100 500%的氯甲醚和20 70%的氯化锌催化剂,在30 50°C下对复合微球进行傅氏反应,反应时间为8 20小时,经吸滤洗涤后加入复合微球重量的20 70%的二氯乙烷,复合微球重量的70 200%的三甲胺盐酸3盐和复合微球重量的60 180%氢氧化钠,在25 40°C进行季胺化反应5 20小时,反应结束后加入氢氧化钠转型,然水洗至中性,即得大孔有机/无机纳米复合树脂;其中单体选自甲基丙烯酸甲酯、甲基丙烯酸丁酯、丙烯酸丁酯、苯乙烯或丙烯腈中的至少一种;共聚单体选自双甲基丙烯酸乙二醇酯、二丙烯基苯、二乙烯基苯基甲烷或二乙烯基苯中的至少一种;纳米材料选自多壁碳纳米管、单壁碳纳米管、纳米氧化锌、纳米氧化硅或纳米氧化钛中的至少一种;引发剂选自过氧化苯甲酰或偶氮二异丁腈中的至少一种;其中助剂一选自聚乙烯醇、明胶或甲基纤维素中的至少一种;其中助剂二选自聚苯乙烯、汽油或石蜡油中的至少一种。上述技术方案中,单体加入量优选范围为大孔有机/无机纳米复合微球重量的 20 50% ;共聚单体加入量优选范围为大孔有机/无机纳米复合微球重量的3 20% ;无机纳米材料的加入量优选范围为大孔有机/无机纳米复合微球重量的0. 1 10% ;引发剂加入量优选范围为大孔有机/无机纳米复合微球重量的0. 1 2% ;助剂一加入量优选范围为大孔有机/无机纳米复合微球重量的0. 1 2% ;助剂二加入量优选范围为大孔有机/ 无机纳米复合微球重量的20 60%。无机纳米材料在有机相中的分散均勻程度会影响大孔有机/无机纳米复合树脂的性能。无机纳米材料分散不均勻会导致大孔纳米复合树脂其催化性能降低。本专利技术通过在聚合反应前利用超声波的分散引发等多重作用,实现无机纳米材料在单体液体中的迅速均勻分散,把分散预聚合的时间由原来的4 8小时缩短到5 30分钟,提高了有机/无机纳米复合树脂的合成效率,且采用本专利技术的技术方案制备的大孔有机/无机纳米复合树脂树脂对环氧乙烷水合反应的转化率和选择性提高到99. 8%和98. 3%,取得了较好的技术效果。下面通过实施例对本专利技术作进一步的说明。有必要在此指出的是以下实施例只用于对本专利技术的进一步说明,不能理解为对本专利技术保护范围的限制。具体实施例方式实施例1在IOOml烧杯中加入29. 2克苯乙烯,5. 8克二乙烯基苯和0. 35克过氧化苯甲酰引发剂,然后加入1. 2克多壁碳纳米管,用超声发生器(功率设定600w)超声5min,得到混合溶液。将得到的混合溶液加入500ml三口烧瓶,并加入200ml浓度为1. 5%明胶水溶液和 35. 6克200#汽油。调节搅拌速度,同时逐步升温至80°C,反应4小时;升温至98°C,反应2 小时。反应结束后,倾倒出上层液体,用热水洗涤,然后过滤,干燥得到复合微球A。复合珠体的功能化在250毫升三口瓶内,加入20克复合微球A和80毫升氯甲醚,搅拌升温至30°C,加入8克氯化锌为催化剂,在40°C对复合微球进行傅氏反应,反应时间为8小时,吸滤,用丙酮等洗涤。加入6克二氯乙烷和16克三甲胺盐酸盐,20%重量氢氧化钠90毫升,在25°C左右进行季胺化反应20小时,反应结束后加氢氧化钠转型,水洗至中性,得到复合树脂A。将10毫升复合树脂A装填于直径为10毫米,长350毫米的不锈钢固定床反应器中,通过计量泵将摩尔比为10 1的水和环氧乙烷输送至反应系统。反应压力为1.2兆帕, 温度为87 93°C,液体空速为3小时―1,产物通过HP5890气相色谱进行分析,环氧乙烷转化率为99. 8%,乙二醇的选择性为98. 3%。实施例2在IOOml烧杯中加入30. 3克甲基丙烯酸甲酯,10. 4克二丙烯基苯和0. 25克偶氮二异丁腈引发剂,然后加入1.8克单壁碳纳米管,用超声发生器(功率设定900w)超声 15min,得到混合溶液。将得到的混合溶液加入250ml三口烧瓶,并加入200ml浓度为1. 5% 聚乙烯醇溶液和49. 2克聚苯乙烯。调节搅拌速度,同时逐步升温至80V,反应4小时;再升温到98°C,反应2小时。反应结束后,倾倒出上层液体,用热水洗涤,然后过滤,干燥得到复合微球B。复合珠体的功能化在250毫升三口瓶内,加入30克复合微球B和100毫升氯甲醚,搅拌升温至30°C,加入15克氯化锌为催化剂,在50°C对复合微球进行傅氏反应,反应时间为15小时,吸滤,用丙酮等洗涤。加入18克二氯乙烷和30克三甲胺盐酸盐,20%重量氢氧化钠150毫升,在30°C左右进行季胺化反应8小时,反应结束后加氢氧化钠转型,水洗至中性,得到复合树脂B。将10毫升复合树脂B装填于直径为10毫米,长350毫米的不锈钢固定床反应器中,通过计量泵将摩尔比为10 1的水和环氧乙烷输送至反应系统。反应压力为1.2兆帕, 温度为87 93°C,液体空速为3小时―1,产物通过HP5890气相色谱进行分析,环氧乙烷转化率为99. 7%,乙二醇的本文档来自技高网...

【技术保护点】

【技术特征摘要】

【专利技术属性】
技术研发人员:蔡红俞峰萍何文军杨为民
申请(专利权)人:中国石油化工股份有限公司中国石油化工股份有限公司上海石油化工研究院
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1
相关领域技术