非接触电力传送装置制造方法及图纸

技术编号:7128227 阅读:121 留言:0更新日期:2012-04-11 18:40
非接触电力传送装置具有:交流电源;谐振系统、负载、阻抗测量部和分析部。谐振系统具有与交流电源连接的初级线圈、初级侧谐振线圈、次级侧谐振线圈和次级线圈。负载与次级线圈连接。阻抗测量部能够测量谐振系统的输入阻抗。分析部分析阻抗测量部的测量结果。

【技术实现步骤摘要】
【国外来华专利技术】
本专利技术涉及非接触电力传送装置
技术介绍
例如,在非专利文献1和专利文献1中,公开了一种如图11所示的以相互分离的状态配置2个铜线线圈51、52(谐振线圈),通过电磁场谐振从一方铜线线圈51向另一方铜线线圈52传送电力的技术。具体而言,在与交流电源53连接的初级线圈54中产生的磁场, 通过铜线线圈51、52的磁场谐振被增强。被增强后的磁场在铜线线圈52的附近,由次级线圈55利用电磁感应作为电力被取得,并向负载56供给。而且,经过确认,在把半径30cm的铜线线圈51、52离开2m配置的情况下,可以点亮作为负载56的60W的点灯。另外,非专利文献1和专利文献1还记载了关于对机器人的供电。非专利文献1 =NIKKEI ELECTRONICS 2007. 12. 3117 页 128 页专利文献1 国际公开专利W0/2007/008646 A2在该非接触电力传送装置中,为了高效率向负载供给交流电源的电力,需要把来自交流电源的电力高效率供给到谐振系统。但是,在非专利文献1和专利文献1中,只记载了非接触电力传送装置的概要。因此,没有关于具体如何可以实现能够高效率地进行电力供给的非接触电力传送装置的记载。而且,谐振系统的输入阻抗会因谐振线圈间的距离和负载电阻而变化。因此,为了进行高效率的非接触电力传送,需要从交流电源53以与发送侧(送电侧)的铜线线圈51与接收侧(受电侧)的铜线线圈52的距离对应的最佳频率向初级线圈54供给电流。在是送电侧的铜线线圈51和受电侧的铜线线圈52都被固定配置在规定的位置来使用的非接触电力传送装置的情况下,最初只需要测量铜线线圈51、52之间的距离,以与该距离相适应的频率,向初级线圈54供给电流即可。但是,在例如对被配置在移动体上的负载非接触地进行电力传送的情况下,需要在配置了负载的移动体中配置受电侧的铜线线圈52。在这种情况下,在移动体停止在从送电侧的铜线线圈51接受电力的位置时,需要测量铜线线圈51、 52之间的距离。如果为了测量铜线线圈51、52之间的距离而设置了专用的传感器,则在制造中增加了制造该传感器的工序,并使得装置大型化。而且,在对被配置在移动体中的二次电池进行充电的情况下,希望把握该二次电池的充电状态进行充电。但是,如果为了检测充电状态而设置专用的传感器,则在制造中增加了制造该传感器的工序,并使得装置大型化。
技术实现思路
本专利技术的目的在于,提供一种通过分析谐振系统的输入阻抗,能够以最佳的条件进行电力传送的非接触电力传送装置。为了达到上述的目的,本专利技术的非接触电力传送装置具有交流电源、谐振系统、负载、阻抗测量部和分析部。上述谐振系统具有与上述交流电源连接的初级线圈、初级侧谐振线圈、次级侧谐振线圈及次级线圈。上述负载与上述次级线圈连接。上述阻抗测量部能够测量上述谐振系统的输入阻抗。上述分析部分析上述阻抗测量部的测量结果。 附图说明图1是表示本专利技术的一个实施方式的非接触电力传送装置的结构图。图2是表示充电装置与移动体的关系的示意图。图3 (a) (e)是使谐振线圈间的距离固定,使负载电阻变化时的谐振系统相对于频率的输入阻抗和输出电压的关系的曲线图。图4(a) (e)是使谐振线圈间的距离固定,使负载电阻变化时的谐振系统对频率的输入阻抗和电力传送效率的关系的曲线图。图5是表示最大输出电压和最大电力传送效率相对于负载电阻的关系 的曲线图。图6是表示在负载电阻变化时的输入阻抗和频率的关系的曲线图。图7 (a) (e)是使负载电阻固定,使谐振线圈间的距离变化时的谐振系统相对于频率的输入阻抗与电力传送效率的关系的曲线图。图8(a) (e)是使负载电阻固定,使谐振线圈间的距离变化时的谐振系统相对于频率的输入阻抗和输出电压的关系的曲线图。图9是表示最大输出电压和最大电力传送效率相对于谐振线圈间的距离的关系的曲线图。图10是表示在输入阻抗值的极大点和极小点的频率差与谐振线圈间的距离之间的关系的曲线图。图11是表示现有的非接触电力传送装置的结构图。 具体实施例方式下面,根据图1 图10,对具体实现本专利技术的一个实施方式进行说明。如图1所示,非接触电力传送装置10具有把从交流电源11供给的电力以非接触方式传送的谐振系统12。谐振系统12具有与交流电源11连接的初级线圈13、初级侧谐振线圈14、次级侧谐振线圈15和次级线圈16。次级线圈16与负载17连接。在本实施方式中,非接触电力传送装置10被应用在对搭载于移动体(例如,车辆)18中的二次电池19进行非接触充电的系统中。而且,如图2所示,在移动体18中配置有次级侧谐振线圈15和次级线圈16。次级线圈16通过整流电路30与作为负载17的二次电池19连接。另外,交流电源11、初级线圈13和初级侧谐振线圈14被配置在以非接触状态对二次电池19进行充电的充电装置20中。非接触电力传送装置10通过从交流电源11向初级线圈13施加交流电压,使初级线圈13中产生磁场。该磁场借助初级侧谐振线圈14和次级侧谐振线圈15的磁场谐振被增强。被增强后的磁场在次级侧谐振线圈15的附近由次级线圈16利用电磁感应作为电力 (电能)被取得,并被供给负载17。初级线圈13、初级侧谐振线圈14、次级侧谐振线圈15 和次级线圈16由电线形成。线圈的直径和匝数,对应要传送的电力的大小等适宜地设定。 在本实施方式中,初级线圈13、初级侧谐振线圈14、次级侧谐振线圈15和次级线圈16具有相同的直径。交流电源11是输出交流电压的电源。交流电源11的输出交流电压的频率可自由变化。因此,被施加在谐振系统12的交流电压的频率可自由变化。充电装置20具有可测量谐振系统12的输入阻抗的阻抗测量部22和作为控制部的控制装置23。所谓“谐振系统12的输入阻抗”,是指在初级线圈13的两端测量出的谐振系统12整体的阻抗。控制装置23具有CPU24和存储器25,在存储器25中存储有分析阻抗测量部22的测量结果的分析程序。CPU24构成分析阻抗测量部22的测量结果的分析部。分析程序包括根据阻抗测量部22的测量结果,计算出初级侧谐振线圈14与次级侧谐振线圈15之间的距离(谐振线圈间的距离)的距离计算程序、和计算出与次级线圈 16连接的负载17( 二次电池19)的阻抗的负载计算程序。在存储器25中,存储有表示谐振系统12的输入阻抗值的极大点和极小点的交流电源11的频率差与谐振线圈间的距离的关系的距离计算用映射表。在输入阻抗的值的极大点和极小点分别出现在2处的情况下, 存储有频率低的一侧的极大点的频率、与频率高的一侧的极小点的频率之差。另外,在存储器25中,存储有表示谐振系统12的输入阻抗、频率、负载的阻抗的关系的负载阻抗计算用映射表。距离计算程序在求出了输入阻抗值的极大点的频率与极小点的频率之差后,使用距离计算用映射表求出与该频率差的值对应的谐振线圈间的距离。然后,控制装置23在进行非接触电力传送装置10的驱动时,控制交流电源11,以便向初级线圈13供给与至移动体 18的距离对应的适当频率的交流电流。这里,所谓适当的频率是指与初级侧谐振线圈14和次级侧谐振线圈15之间的距离(谐振线圈间的距离)对应的频率,在把谐振系统12的输入阻抗值与频率的关系用曲线表示的情况下,表示在输入阻抗值的极大点的频率与极小点的频率之本文档来自技高网
...

【技术保护点】
1.一种非接触电力传送装置,具有:交流电源;具有与上述交流电源连接的初级线圈、初级侧谐振线圈、次级侧谐振线圈和次级线圈的谐振系统;与上述次级线圈连接的负载;能够测量上述谐振系统的输入阻抗的阻抗测量部;和分析上述阻抗测量部的测量结果的分析部。

【技术特征摘要】
【国外来华专利技术】...

【专利技术属性】
技术研发人员:高田和良
申请(专利权)人:株式会社丰田自动织机
类型:发明
国别省市:JP

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1