当前位置: 首页 > 专利查询>江苏大学专利>正文

一种五自由度无轴承同步磁阻电机解耦控制器制造技术

技术编号:6857846 阅读:257 留言:0更新日期:2012-04-11 18:40
本实用新型专利技术公开一种五自由度无轴承同步磁阻电机解耦控制器,由伪线性系统及串接之前的线性闭环控制器组成,伪线性系统由复合被控对象及串接之前的支持向量机α阶逆系统组成,复合被控对象由三个扩展的电流滞环PWM逆变器及开关功率放大器与五自由度无轴承同步磁阻电机共同组成,第一扩展的电流滞环PWM逆变器和开关功率放大器分别串接三自由度主动磁轴承a之前,第二、第三扩展的电流滞环PWM逆变器分别串接二自由度无轴承同步磁阻电机b之前;支持向量机α阶逆系统由5个支持向量机2阶系统和一个支持向量机1阶系统加11个积分器组成,线性闭环控制器由五个转子位置控制器及一个转速控制器组成;结构紧凑,实现各个被控量之间的动态解耦控制。(*该技术在2021年保护过期,可自由使用*)

【技术实现步骤摘要】

本技术涉及一种五自由度无轴承同步磁阻电机解耦控制器,适用于高速及超高速电气传动领域。无轴承同步磁阻电机在机床主轴、涡轮分子泵、离心机、压缩机、机电贮能、航空航天等特殊电气传动领域具有广泛的应用前景,属于电气传动控制设备的

技术介绍
与传统无轴承电机相比,同步磁阻电机具有诸多优势转子上省略了永磁体,也无励磁绕组,结构简单,运行可靠,成本低,还因其可以实现很高的凸极比,从而同时具有高转矩密度、快速动态响应、低转矩脉动、低损耗、高功率因数等优点,更加适合高速及高精度应用领域。将无轴承技术及磁轴承技术应用于同步磁阻电机,即利用磁场力将转子悬浮于空中,使转子和定子之间无任何机械接触,使无轴承同步磁阻电机不仅具有同步磁阻电机的优点,又具有无润滑、寿命长、无摩擦、无机械噪声等优势,满足了众多场合需要高速或超高速电气传动的要求,在高速电气传动等特殊应用场所有着独特优势。五自由度无轴承同步磁阻电机是一个非线性、强耦合的多输入多输出系统,对其进行动态解耦控制是实现无轴承同步磁阻电机稳定可靠工作的关键。如果采用分散控制方法对系统进行控制,则忽略了系统各个变量之间的耦合作用,无法满足高速高精度运转的要求,必须对系统进行解耦,分别独立控制磁轴承的径向悬浮力、轴向悬浮力、电机的径向悬浮力以及电磁转矩。常用的解耦控制方法中,矢量控制只能实现转矩和悬浮力的静态解耦控制,其动态响应性能还不能令人满意;微分几何方法虽然可以实现系统的动态解耦,但是需要将问题变换到几何域中来讨论,并且使用的数学工具相当复杂、抽象;逆系统方法可以实现系统的动态解耦,但是需要知道被控对象的精确数学模型,难以应用于工程实践中;神经网络逆解耦控制能够在解析逆难以求得的情况下实现系统的动态解耦,但神经网络在理论和设计方法上还存在学习速度慢、训练时间长,理想的样本提取困难,网络结构不易优化等难以克服的缺陷。专利申请号为201010117622. 4、名称为无轴承同步磁阻电机支持向量机逆系统复合控制器,采用支持向量机逆系统复合控制器对二自由度无轴承同步磁阻电机进行解耦控制,其针对的控制对象是二自由度无轴承同步磁阻电机,但对由二自由度无轴承同步磁阻电机和三自由度主动磁轴承构成的结构更为复杂的五自由度无轴承同步磁阻电机却无法进行解耦控制,五自由度无轴承同步磁阻电机不仅电机的结构更为复杂,而且由于在建立系统运动方程时,将转子看作刚体并且考虑系统的各自由度之间的耦合问题和系统的陀螺效应,使得其数学模型、控制方法、解耦难度与二自由度无轴承同步磁阻电机存在本质区别。
技术实现思路
本技术的目的是为克服上述现有技术的缺陷而提供一种基于最小二乘支持向量机的五自由度无轴承同步磁阻电机解耦控制器,既可实现磁轴承的径向悬浮力、轴向悬浮力、电机径向悬浮力和电磁转矩之间的解耦控制,又可获得良好的各项控制性能指标, 如转子径向位置动、静态调节特性及转矩、速度调节性能。本技术五自由度无轴承同步磁阻电机解耦控制器采用的技术方案是五自由度无轴承同步磁阻电机包括三自由度主动磁轴承a、二自由度无轴承同步磁阻电机b和转子e,五自由度无轴承同步磁阻电机解耦控制器由伪线性系统及串接之前的线性闭环控制器组成,伪线性系统由复合被控对象及串接之前的支持向量机α阶逆系统组成,复合被控对象由三个扩展的电流滞环PWM逆变器及开关功率放大器与五自由度无轴承同步磁阻电机共同组成,第一扩展的电流滞环PWM逆变器和开关功率放大器分别串接三自由度主动磁轴承a之前,第二、第三扩展的电流滞环PWM逆变器分别串接二自由度无轴承同步磁阻电机 b之前;支持向量机α阶逆系统由5个支持向量机2阶系统和一个支持向量机1阶系统加 11个积分器组成,线性闭环控制器由五个转子位置控制器及一个转速控制器组成。本技术的有益效果在于 1.针对五自由度无轴承同步磁阻电机这一非线性、强耦合的多输入多输出系统, 采用最小二乘支持向量机逼近非线性系统的的a阶逆模型,构造复合被控对象的a阶逆模型,不需要知道被控系统的精确数学模型,克服了逆系统方法难以求得解析逆的难题。通过将系统线性化和解耦成为6个互相独立的线性积分子系统来实现各个被控量之间的动态解耦控制,将复杂的非线性耦合控制问题变为简单的线性控制问题,进而使控制系统设计得以简化并容易达到系统所要求的性能指标,不仅实现了五自由度无轴承同步磁阻电机转子的稳定悬浮,而且使得磁轴承的径向悬浮力、轴向悬浮力、电机径向悬浮力和电磁转矩6 者之间实现独立控制,并有效的提高了整个系统的控制性能,获得优良的静、动态特性。采用的最小二乘支持向量机方法是在经验风险最小化的基础上同时采用了结构风险最小化准则,较好地解决了神经网络等传统的机器学习方法中的过学习、维数灾难以及过早收敛等问题,具有很高的推广应用价值,并且为其它无轴承电机及磁轴承解耦控制提供了一条有效途径。2.径向悬浮力控制采用三相功率逆变电路,轴向悬浮力控制采用开关功率放大器,使得五自由度无轴承同步磁阻电机的控制方法简单,结构紧凑,功耗低,成本下降,摆脱了传统磁轴承支承的电机结构复杂,临界转速低,控制系统复杂,功率放大器造价高,体积大等缺陷。3.针对五个转子位置二阶积分线性子系统和一个速度一阶积分线性子系统,可进一步采用PID、极点配置、线性最优二次型调节器或鲁棒伺服调节器等方法分别设计一个转速控制器和五个位置控制器,组成线性闭环控制器,使系统获得高性能的转速、位置控制以及抗负载扰动的运行性能。4.实现了五自由度无轴承同步磁阻电机的多变量之间的独立控制,有效克服了无轴承同步磁阻电机基于磁场定向仅仅进行公式变换无法实现解耦控制这一难题,同时克服了采用前馈补偿控制器,近似处理,在线查表和实时参数检测等解耦方法只能实现系统静态解耦,不能实现系统动态解耦的缺陷。附图说明图1是五自由度无轴承同步磁阻电机1的结构示意图;图2是扩展的电流滞环PWM逆变器结构示意图;图3是复合被控对象8的结构示意图;图4是支持向量α阶逆系统6的结构示意图;图5是由支持向量α阶逆系统6与复合被控对象8组成的伪线性系统9的示意图及其等效图;图6是五自由度无轴承同步磁阻电机1的解耦控制原理框图;图7是五自由度无轴承同步磁阻电机解耦控制器10的总体框图;图中1.五自由度无轴承同步磁阻电机;2.第一扩展的电流滞环PWM逆变器; 3.第二扩展的电流滞环PWM逆变器;4.第三扩展的电流滞环PWM逆变器;5.开关功率放大器;6.支持向量机α阶逆系统;7.线性闭环控制器;8.复合被控对象;9.支持向量机α 阶逆系统;10.五自由度无轴承同步磁阻电机解耦控制器;22.第一 Clark逆变换;23.第一电流滞环PWM逆变器;31.第一 Park逆变换;32.第二 Clark逆变换;33.第二电流滞环P丽逆变器;41.第二 Park逆变换;42.第三Clark逆变换;43.第三电流滞环PWM逆变器;61、 62、63、64、65.支持向量机2阶系统;66.支持向量机1阶系统;71、72、73、74、75.转子位置控制器;76.转速控制器。具体实施方式如图1所示,本技术的五自由度无轴承同步磁阻电机1的结构包括三自由度主动磁轴承a、二自由度无轴承同步磁阻电机b和转子e,三自由度主动磁轴承a分别控制转本文档来自技高网
...

【技术保护点】
1.一种五自由度无轴承同步磁阻电机解耦控制器,五自由度无轴承同步磁阻电机(1)包括三自由度主动磁轴承a、二自由度无轴承同步磁阻电机b和转子e,其特征在于: 所述五自由度无轴承同步磁阻电机解耦控制器由伪线性系统(9)及串接之前的线性闭环控制器(7)组成,所述伪线性系统(9)由复合被控对象(8)及串接之前的支持向量机α阶逆系统(6)组成,所述复合被控对象(8)由三个扩展的电流滞环PWM逆变器(2、3、4)及开关功率放大器(5)与五自由度无轴承同步磁阻电机(1)共同组成,第一扩展的电流滞环PWM逆变器(2)和开关功率放大器(5)分别串接三自由度主动磁轴承a之前,第二、第三扩展的电流滞环PWM逆变器(3、4)分别串接二自由度无轴承同步磁阻电机b之前;所述支持向量机α阶逆系统(6)由5个支持向量机2阶系统(61、62、63、64、65)和一个支持向量机1阶系统(66)加11个积分器组成,所述线性闭环控制器(7)由五个转子位置控制器(71、72、73、74、75)及一个转速控制器(76)组成。

【技术特征摘要】

【专利技术属性】
技术研发人员:朱熀秋刁小燕阮颖张婷婷李衍超李天博张涛孙晓东
申请(专利权)人:江苏大学
类型:实用新型
国别省市:32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1