一种用于开关电源的频率抖动电路制造技术

技术编号:6707145 阅读:538 留言:0更新日期:2012-04-11 18:40
一种用于开关电源的频率抖动电路,该频率抖动电路通过调节全差分开关电容积分器的采样电容和积分电容的比例以及输入参考电压值,可以方便的改变差分三角波的连续程度。另一方面,通过差分三角波产生电路,消除了因为开关非理想效应带来的频率抖动周期的偏差,提高了在降低芯片电磁干扰方面的一致性。最后,通过系统反馈电压处理电路,自动检测负载状况,自适应调节频率抖动电路的输出频率和频率抖动量,在降低芯片电磁干扰和维持系统稳定保持很好的折中。本实用新型专利技术的系统稳定性好,频率抖动精度高。(*该技术在2020年保护过期,可自由使用*)

【技术实现步骤摘要】

本技术涉及一种用于开关电源的频率抖动电路
技术介绍
随着能源的日趋紧张,对能源如何进行合理的利用越来越被提上了日程。开关电源以其效率高,热耗小的优点得到了广泛的应用。大多数电器设备诸如家电、手持电子设备、工控设备都采用开关电源变换器作为其电源解决方案。作为开关电源系统,一个逃离不开的问题是其采用时钟作为能量搬移的手段,因此电磁干扰是开关电源系统需要关注的一个问题。通常,开关电源变换器的大部分能量集中在开关频率的基波频率和低次谐波频率处,并在这些频率处形成辐射峰。为了降低开关电源芯片片外电磁干扰滤波器的设计难度, 通常在开关电源芯片内部采用相关的设计方法来减小电磁干扰。目前比较常采用的降低电磁干扰的方法为频率抖动。频率抖动的核心思想是将辐射的能量从分立状态扩展到一个相对连续的状态,从而降低能量辐射峰值。未采用频率抖动方法的时钟频谱如图1中101所示,采用频率抖动方法的时钟频谱如图2中102所示。目前常采用的频率抖动电路分为数字控制和模拟控制。图3是一种现有的数字控制的频率抖动电路。该电路包含计数器201,数模转换器202,振荡器203。振荡器提供计数器计数脉冲。计数器从000···00到111 "11然后到00(>"00的周期计数。计数器的输出提供给数模转换器,产生一个周期性的三角波产生。数模转换器的输出控制振荡器产生抖动的频率输出。这种频率抖动电路的缺点是计数器数量较多,而且采用数模转换器,需要占用很大的芯片面积。如果希望抖动频率具有较好的连续性,需要采用更大计数位数的计数器,这更进一步增大了芯片面积。模拟控制的频率抖动电路常采用开关电容方式产生一个低频的三角波。对于图4 所示的301方式产生低频三角波。由于电容306和电容307充放电成对数关系,所产生的三角波为一个近似的三角波。为了实现较连续的低频的三角波,通常需要较大的电容比。对于图5所示的302方式,为了实现低频三角波,需要实现窄脉冲,窄脉冲控制开关对电容进行充放电,三角波的频率精度会受到影响。对于上述的两种方式,都无法避免开关303,304, 305的沟道电荷对三角波频率精度的影响。传统的频率抖动电路的频率抖动范围为一个固定值。在负载较重的情况下,开关电源的频率较高,此时频率抖动范围与开关电源的频率的比值较小,频谱扩展的效果不太好。在负载较轻的情况下,开关电源的频率较低,此时频率抖动范围与开关电源的频率的比值较大,系统稳定性受到影响。因此,为了改进传统频率抖动电路的不足。有必要设计一种更优化的频率抖动电路以解决上述问题。
技术实现思路
本技术提供的一种用于开关电源的频率抖动电路,系统稳定性好,频率抖动精度尚°为了达到上述目的,本技术提供一种用于开关电源的频率抖动电路,包含电路连接的反馈电压处理电路、差分三角波产生电路、差分转单端电路、压控振荡器。所述反馈电压处理电路的输入端接反馈电压,输出端连接差分三角波产生电路、 差分转单端电路、压控振荡器;所述差分三角波产生电路的输出端连接差分转单端电路; 所述差分转单端电路的输出端连接压控振荡器;所述压控振荡器的输出端连接差分三角波产生电路,且压控振荡器的输出端输出时钟信号。所述的反馈电压处理电路通过检测反馈电压,来判断开关电源的负载状态,从而调节差分三角波的频率抖动范围。所述的差分三角波产生电路产生一个对工艺影响、开关的非理想效应不敏感的差分三角波输出。所述的差分转单端电路将差分三角波转换成一个周期性抖动的电压输出。所述的压控振荡器产生一个频率与输入成比例的方波输出,同时压控振荡器的输出驱动差分三角波产生电路。所述的反馈电压处理电路包含电路连接的第一比较器、第二比较器、第一或非门、 第二或非门、第一开关、第二开关、第三开关和反相器。所述反馈电压处理电路的输入包含系统反馈电压,阈值5和阈值6。当系统反馈电压大于阈值5电压时,第一开关闭合,第二开关、第三开关断开,反馈电压处理电路的输出等于阈值5的电压;当系统反馈电压小于阈值5电压,并且系统反馈电压大于阈值6电压时,第二开关闭合,第一开关、第三开关断开,反馈电压处理电路的输出等于系统反馈电压;当系统反馈电压小于阈值6电压时,第三开关闭合,第一开关、第二开关断开,反馈电压处理电路的输出等于阈值6的电压。所述的反馈电压处理电路中的第一比较器和第二比较器都包含电路连接的电流源、第一晶体管、第二晶体管、第三晶体管、第四晶体管、第五晶体管、第六晶体管。所述的第一晶体管和第二晶体管为共源极的差分对管,其源极与电流源相连,第一晶体管的漏极与第三晶体管和第四晶体管的漏极相连,第二晶体管的漏极与第五晶体管和第六晶体管的漏极相连。第三晶体管和第五晶体管的栅极连接第一晶体管的漏极。第四晶体管和第六晶体管的栅极接连第二晶体管的漏极。所述的差分三角波产生电路包含电路连接的四相非交叠时钟产生电路,全差分开关电容积分器和积分翻转逻辑电路。四相非交叠时钟产生电路产生四相与输入时钟存在频率和相位关系的四相不重叠时钟。全差分开关电容积分器在四相不重叠时钟和第一翻转控制时钟、第二翻转控制时钟的驱动下,以一定的周期进行正向、反向积分。积分翻转逻辑电路根据全差分开关电容积分器的一端输出产生第一翻转控制时钟、第二翻转控制时钟。所述的全差分开关电容积分器包含电路连接的第一开关、第二开关、第三开关、 第四开关、第五开关、第六开关、第七开关、第八开关、第九开关、第十开关、第十一开关、第十二开关、第一电容、第二电容、第三电容、第四电容和全差分运算放大器。第一非交叠时钟控制第五开关和第六开关,第二非交叠时钟控制第七开关和第八开关,第三非交叠时钟控制第九开关和第十开关,第四非交叠时钟控制第十一开关和第十二开关。当非交叠时钟为高电平时,对应的所控制的开关闭合。当非交叠时钟为低电平时,对应的所控制的开关断开。5所述的积分翻转逻辑电路包含电路连接的第一比较器、第二比较器、RS触发器、第一反相器、第二反相器。所述第一比较器的正输入端和第二比较器的负输入端连接来自全差分开关电容积分器的三角波电压信号。第一比较器的负输入端连接电压VF+K*VF,第二比较器的正输入端连接电压VF-K*VF。第一比较器的输出接RS触发器的R端,第二比较器的输出接RS触发器的S端。RS触发器的输出接第一反相器的输入,第一反相器的输出接第二反相器的输入。第一反相器的输出为第一翻转控制时钟,第二反相器的输出为第二翻转控制时钟。电压VF+K*VF和电压VF-K*VF为全差分开关电容积分器的积分上限和积分下限。全差分开关电容积分器和积分翻转逻辑电路组成闭合的负反馈环路。通过负反馈环路的调节,全差分开关电容积分器在正向积分和反向积分之间周期切换。在反向积分环节中,积分翻转逻辑电路的输入的电压线性增加,当达到上限时,触发RS触发器翻转,第一翻转控制时钟从低电平变为高电平,第二翻转控制时钟从高电平变为低电平,进入正向积分环节。在正向积分环节中,积分翻转逻辑电路的输入的电压线性减小,当达到下限时,触发RS触发器翻转,第一翻转控制时钟从高电平变为低电平,第二翻转控制时钟从低电平变为高电平,进入反向积分环节。所述的差分转单端电路包含电路连接的第一电阻、第二电阻、第三电阻、第四电阻和运算放大器。第一电阻、第二电阻的一端连接差分转本文档来自技高网
...

【技术保护点】
1.一种用于开关电源的频率抖动电路,其特征在于,该频率抖动电路包含电路连接的反馈电压处理电路(401)、差分三角波产生电路(402)、差分转单端电路(403)、压控振荡器(404);所述反馈电压处理电路(401)的输入端接反馈电压,输出端连出端连接差分三角波产生电路(402),且压控振荡器(404)的输出端输出时钟信号。接差分三角波产生电路(402)、差分转单端电路(403)、压控振荡器(404);所述差分三角波产生电路(402)的输出端连接差分转单端电路(403);所述差分转单端电路(403)的输出端连接压控振荡器(404);所述压控振荡器(404)的输

【技术特征摘要】

【专利技术属性】
技术研发人员:职春星吴启明徐滔李应天惠国瑜韩春峰
申请(专利权)人:灿芯半导体上海有限公司
类型:实用新型
国别省市:31

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1