当前位置: 首页 > 专利查询>浙江大学专利>正文

一种超高分辨率的光学显微成像装置制造方法及图纸

技术编号:6681209 阅读:272 留言:0更新日期:2012-04-11 18:40
本实用新型专利技术公开了一种超高分辨率的光学显微成像装置。采用窄带滤光、环形孔径及暗视场照明相结合的特种照明及显微成像方法,同时设计了不同数值孔径、透过率和滤色特性的环形透光孔径,实现对微纳米尺寸物质的超高分辨率和高对比度的显微成像。它具有LED照明光源、挡光板、环形透光孔、聚光镜、样品台、遮光圆片及显微物镜组成的高分辨率光学显微系统和CCD图像传感器、图像采集卡及计算机组成的显微图像采集、处理系统。本实用新型专利技术的优点是既保持常规光学显微镜的实时、直接、无扫描的成像观测方式,同时具有出色的分辨率和图像对比度。(*该技术在2020年保护过期,可自由使用*)

【技术实现步骤摘要】

本技术属于光学显微
,特别地涉及一种超高分辨率的光学显微成像装置
技术介绍
随着微纳米技术的蓬勃发展,人们对能在细胞、纳米乃至原子水平上对物质进行观察和研究的仪器的要求越来越高。尽管近几十年发展起来的扫描电子显微镜(SEM)、扫描隧道显微镜(STM)、原子力显微镜(AFM)和近场光学显微镜(SNOM)的分辨率可以达到微纳米级,但也存在设备庞大、价格昂贵、操作复杂等缺点,同时,它们所获得的样品图像是经过扫描并重建的,无法实现光学显微镜那样对样品进行实时而直接的观察成像。因此许多科学研究和工业领域应用较多的仍是一般的光学显微镜。不过,传统的光学显微镜其分辨率受到光学衍射的限制。根据瑞利判据,两个被照明的物体,只有它们之间的距离d大于0.61λ/(Ν.Α.)时才能被区分开,其中λ表示入射光波长,N. Α.表示数值孔径,即为物方折射率η与物镜在样品一侧的半孔径角正弦sine的乘积。因此提高光学显微镜分辨率的途径主要有两个,一是缩短入射光的波长λ,二是提高显微镜的数值孔径N. Α.,包括通过设计复合透镜加大显微物镜的孔径角θ和采用油浸物镜增大物镜与样品之间的折射率η。单纯增大孔径角只能使N. Α.增大到0.95,即使采用油浸物镜,N. Α.最大也只能到1.5。而且使用上述方法在原来的基础上再进一步提高光学显微镜的分辨率必然会使设备的技术难度和成本都急剧的上涨。本技术提出和发展了一种超高分辨率的光学显微成像方法,建立超高分辨率的光学显微成像装置。采用窄带滤光、 环形孔径及暗视场照明相结合的特种照明及显微成像方法,实现对微纳米尺寸物质的超高分辨率和高对比度的显微成像,满足在工业、农业、国防和科学技术等国民经济与社会发展各领域的需求。
技术实现思路
本技术的目的是克服现有光学显微技术的不足,提供一种超高分辨率的光学显微成像装置。超高分辨率的光学显微成像装置包括环形孔径照明及显微成像装置、CXD图像传感器、图像采集卡、计算机、电源、粗调焦旋钮、细调焦旋钮、光源亮度调节旋钮和支架;支架上设有环形孔径照明及显微成像装置、粗调焦旋钮、细调焦旋钮和光源亮度调节旋钮;环形孔径照明及显微成像装置、CXD图像传感器、图像采集卡、计算机和电源顺次相连;环形孔径照明及显微成像装置包括LED强光源、窄带滤光片、挡光板、环形透光孔、聚光镜、样品台、遮光圆片、显微物镜、目镜和转接透镜;在同一光轴上依次设有LED强光源、窄带滤光片、挡光板、环形透光孔、聚光镜、样品台、遮光圆片、显微物镜、目镜、转接透镜。本技术的超高分辨率的光学显微成像装置,其优点是既保持常规光学显微镜的实时、直接、无扫描的成像观测方式,同时提供更高的分辨率和更好的图像对比度,结构简洁,成本低,技术条件易于实现。采用窄带滤光、环形孔径及暗视场照明相结合的特种照明及显微成像方法,同时设计了不同数值孔径、透过率和滤色特性的环形透光孔径,使显微镜分辨率突破了瑞利衍射极限分辨率,而且获得的显微图像对比度好,可望在微纳米检测、 生物医学研究、医学诊断、以及材料学等领域得到广泛应用。附图说明图1为超高分辨率光学显微成像装置结构示意图及系统框图;图2为超高分辨率光学显微成像光路图;图3为实施例1挡光板及环形透光孔径系列图;图4为实施例2挡光板及环形透光孔径系列图;图中环形孔径照明及显微成像装置1、LED强光源2、窄带滤光片3、挡光板4、环形透光孔5、聚光镜6、样品台7、遮光圆片8、显微物镜9、目镜10、转接透镜11、CXD图像传感器12、图像采集卡13、计算机14、电源15、粗调焦旋钮16、细调焦旋钮17、光源亮度调节旋钮18、支架19。具体实施方式本技术是以透射式远场光学显微镜为主体,在聚光镜前引入窄带滤光片(如中心波长约为430nm,带宽lOnm)和环形孔径。LED强光源发出的平行照明光,通过窄带滤光片获得短波长(如波长430nm左右)的入射光,可以有效提高显微系统的分辨率;环形孔径相当于孔径滤波器,让样品高频细节成分通过光学系统,而将低频弥散成分有效地抑制,从而实现高分辨率的显微成像;而且由环形孔径产生的斜入射光照明样品后,又以倒立的空心圆锥光束方式进入一遮光圆片,只让大数值孔径那部分光线通过显微物镜(如采用 IOOX油浸物镜,数值孔径N. A.约为1.2 参与成像,而将中心部分遮挡,从而包含样品特征信息的透射和散射光线进入物镜,在暗背景中得到亮的高对比度样品像的基础上,进一步实现高分辨显微成像。如图1、2所示,超高分辨率的光学显微成像装置包括环形孔径照明及显微成像装置1、(XD图像传感器12、图像采集卡13、计算机14、电源15、粗调焦旋钮16、细调焦旋钮17、 光源亮度调节旋钮18和支架19 ;支架19上设有环形孔径照明及显微成像装置1、粗调焦旋钮16、细调焦旋钮17和光源亮度调节旋钮18 ;环形孔径照明及显微成像装置1、CXD图像传感器12、图像采集卡13、计算机14和电源15顺次相连;环形孔径照明及显微成像装置1 包括LED强光源2、窄带滤光片3、挡光板4、环形透光孔5、聚光镜6、样品台7、遮光圆片8、 显微物镜9、目镜10和转接透镜11 ;在同一光轴上依次设有LED强光源2、窄带滤光片3、挡光板4、环形透光孔5、聚光镜6、样品台7、遮光圆片8、显微物镜9、目镜10和转接透镜11。如图3所示,实施案例一设计了不同大小的环形孔径,在挡光板上制作一系列环形透光孔,采用环形孔径照明可以有效提高显微系统分辨率。如图4所示,实施例二在实施例一的基础上,将中央挡光圆设计成具有不同的透过率,采用此种环形孔径可以克服实施例一种环形孔径带来的衍射旁瓣的影响。另外也可以不使用窄带滤光片,而是将中央挡光圆与环形透光孔设计成具有不同的滤色特性,相当于对图像进行彩色编码,增强图像对比度。超高分辨率的光学显微成像方法是在透射式远场光学显微镜聚光镜前引入窄带滤光片和环形孔径,LED强光源发出的平行照明光,通过窄带滤光片获得短波长的准单色光,然后用挡光板遮挡准单色光的光束中心部分,仅让周边部分透过环形透光孔,环形孔径相当于孔径滤波器,让高频细节成分通过光学系统,而将低频弥散成分有效地抑制,从而实现高分辨率的显微成像;这一环形光束被聚光镜聚焦,产生高倾斜的空心圆锥状光束,照亮并透过样品后,又以倒立的空心圆锥光束方式进入一遮光圆片,只让大数值孔径那部分光线通过显微物镜参与成像,而将中心部分遮挡,从而包含样品特征信息的透射和散射光线进入物镜,在暗背景中得到亮的高对比度样品像的基础上,进一步实现高分辨显微成像。本技术的工作过程如下接通电源15,通过光源亮度调节旋钮18调节LED强光源2的照明光亮度,照明光线通过窄带滤光片3获得短波长的准单色光;滤光后的照明光束中心部分被挡光板4遮挡, 仅让周边部分透过环形透光孔5 ;这一环形光束被聚光镜6聚焦,产生高倾斜的空心圆锥光束,斜入射光照明样品台7上样品后,通过一遮光圆片8,只让大数值孔径那部分光线通过显微物镜9参与成像,而将中心部分遮挡,从而包含样品特征信息的透射和散射光线进入物镜,在暗背景中得到亮的高对比度样品像的基础上,进一步实现高分辨显微成像。在显微物镜9后得到的样品像,通过目镜10接收放大,再经转接透镜11在CXD图像传感器本文档来自技高网
...

【技术保护点】
1.一种超高分辨率的光学显微成像装置,其特征在于包括环形孔径照明及显微成像装置(1)、CCD图像传感器(12)、图像采集卡(13)、计算机(14)、电源(15)、粗调焦旋钮(16)、细调焦旋钮(17)、光源亮度调节旋钮(18)和支架(19);支架(19)上设有环形孔径照明及显微成像装置(1)、粗调焦旋钮(16)、细调焦旋钮(17)和光源亮度调节旋钮(18);环形孔径照明及显微成像装置(1)、CCD图像传感器(12)、图像采集卡(13)、计算机(14)和电源(15)顺次相连;环形孔径照明及显微成像装置(1)包括LED强光源(2)、窄带滤光片(3)、挡光板(4)、环形透光孔(5)、聚光镜(6)、样品台(7)、遮光圆片(8)、显微物镜(9)、目镜(10)和转接透镜(11);在同一光轴上依次设有LED强光源(2)、窄带滤光片(3)、挡光板(4)、环形透光孔(5)、聚光镜(6)、样品台(7)、遮光圆片(8)、显微物镜(9)、目镜(10)、转接透镜(11)。

【技术特征摘要】

【专利技术属性】
技术研发人员:支绍韬章海军张冬仙
申请(专利权)人:浙江大学
类型:实用新型
国别省市:86

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1