一种烟气在线监测仪中的检测设备制造技术

技术编号:6507192 阅读:247 留言:0更新日期:2012-04-11 18:40
本发明专利技术实施例提供一种烟气在线监测仪中的检测设备,包括一检测探头,所述检测探头插入到烟道中,检测探头的尾部通过安装法兰固定在烟道壁上,光学检测部件固定在检测探头的尾部,在检测探头内部设有光学窗片,所述光学窗片的外周与检测探头的内壁相接触并密封,在光学窗片和检测探头头部入口之间的检测探头内部空间还设置防尘结构,所述防尘结构包括沿检测探头轴向依次设置的至少一段防尘模块,每段防尘模块内形成沿检测探头轴向贯穿的气体通道,并且气体通道靠近光学窗片一侧的口径大于靠近检测探头头部一侧的口径。

【技术实现步骤摘要】

本专利技术涉及在线监测仪
,尤其涉及一种烟气在线监测仪中的检测设备
技术介绍
在利用光学吸收光谱方法对烟气污染物的排放进行采样检测时,传统的方法是将排放的污染气体抽取出来,然后送入到检测设备中进行检测,这种方式需要长距离的采样加热管道、过滤器和冷凝器等复杂装置。为了简化结构,在烟气的在线监测过程中越来越多的采用原位式安装,即将检测设备直接插入到烟气排放的通道里,检测设备包括一检测探头,在检测探头中通过光学窗片隔离光谱仪和烟道环境,并且能够让检测光通过,原位式安装方法提高了烟气监测的便捷性、连续性和实施性,而且结构更加简单。但是,烟道内的恶劣环境也给采用原位式安装方式的检测设备带来了严峻的考验。由于烟道内粉尘浓度很高,为了不会对检测设备带来影响,需要采取一定的防尘措施, 避免粉尘落在光学窗片上给检测结果带来偏差。传统的防尘措施是吹扫防尘方法,图1示出了吹扫防尘方法的原理图,检测探头6 通过安装法兰2固定后插入到烟道4中进行在线分析,光学部件1与烟道4内部的烟尘7 之间通过光学窗片8隔离,使得烟尘7不能扩散到光学部件1中。洁净空气通过高压泵后从洁净空气入口 3通入检测探头6外周的管道内,从光学窗片8外侧的出口喷出,并在光学窗片8前形成一层气帘5,气帘5将进入到检测探头6内的部分烟尘阻挡在光学窗片8内, 防止其落在光学窗片8上,达到除尘的效果。采用上述吹扫防尘方法时,形成气帘的洁净空气会继续在检测探头6内向烟道内部的方向流动,有可能会对被测气体的分布带来一定的影响,从而影响检测结果的准确性。 另外,采用了吹扫防尘方法的检测设备的结构相对比较复杂,会给加工带来一定的难度。再者,还需要配备高压气泵等辅助工具,增加了成本。此外,一旦检测设备插入到烟道后,高压气泵必须连续不间断地工作,因为如果高压气泵停止工作,烟道内的气体和烟尘将从原本用来流通洁净气体的通道反向流出到外部,所以连续不间断工作的高压气泵将造成能源的极大浪费。
技术实现思路
有鉴于此,本专利技术的目的在于提供一种烟气在线监测仪中的检测设备,能够在防止烟尘落在光学窗片上的同时,降低对被测气体的分布的影响。为实现上述目的,本专利技术的一个实施例提供一种烟气在线监测仪中的检测设备, 包括一检测探头,所述检测探头插入到烟道中,检测探头的尾部通过安装法兰固定在烟道壁上,光学检测部件固定在检测探头的尾部,在检测探头内部设有光学窗片,所述光学窗片的外周与检测探头的内壁相接触并密封,在光学窗片和检测探头头部入口之间的检测探头内部空间还设置防尘结构,所述防尘结构包括沿检测探头轴向依次设置的至少一段防尘模块,每段防尘模块内形成沿检测探头轴向贯穿的气体通道,并且气体通道靠近光学窗片一侧的口径大于靠近检测探头头部一侧的口径。优选地,每段防尘模块内部的气体通道沿轴向分成彼此相邻、并且孔径不同的两部分圆柱形孔,并且靠近光学窗片的部分的孔径大于靠近检测探头头部的部分的孔径。优选地,每段防尘模块内部的气体通道沿轴向分成彼此相邻、并且截面面积不同的两部分方形孔,并且靠近光学窗片的部分的截面面积大于靠近检测探头头部的部分的截面面积。优选地,每段防尘模块内部的气体通道呈圆台状,并且圆台的顶部朝向靠近检测探头的头部的一侧,圆台的底部朝向靠近光学窗片的一侧。 优选地,所有段防尘模块独立放置。优选地,所有段的防尘模块连成一体,并一体成型。优选地,在检测探头头部外侧还安装一朝向内侧的反射镜。本专利技术实施例提供的烟气在线监测仪中的检测设备在采取防尘措施时,没有泵入外部气体,而是通过自身内部的防尘结构将气体中的烟尘颗粒沉降下来,对检测过程中的被测气体的分布没有影响。而且本实施例中的防尘结构的构造也较为简单,易于加工,大大降低了成本。附图说明为了更清楚地说明本专利技术实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本专利技术的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。图1是现有技术中采用吹扫防尘方法的检测设备的示意图;图2是恒定流动的流体的一端流管的示意图;图3是运动中的含尘气流中的烟尘颗粒的受力情况示意图;图4是本专利技术中的烟气在线监测仪中的检测设备的一个实施例的示意图;图5是图4中的在线监测仪中的检测设备的每段防尘模块的示意图。具体实施例方式为使本专利技术实施例的目的、技术方案和优点更加清楚,下面将结合本专利技术实施例中的附图,对本专利技术实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本专利技术一部分实施例,而不是全部的实施例。基于本专利技术中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本专利技术保护的范围。实施例一专利技术人在实现本专利技术的过程中,利用流体力学和空气动力学的原理对防尘结构的具体形状进行了设计和分析。为了能够有效地防止烟尘颗粒落在光学检测仪器前的光学窗片上,需要了解烟尘在气体中的运动规律。烟尘粒子在分散气体中是不断运动的,作用域烟尘颗粒上的力可以归纳成以下几种烟尘粒子自身的重力P1、烟尘粒子受到气体介质的浮力P2、烟尘粒子运动时收到气体介质的阻力P3、机械力、静电力、以及风力、气体介质分组热运动的撞击力(例如布朗运动产生的力)、粒子间的相互作用力(例如吸引力)等。其中,最后两种力相比于前四种力是很小的,近乎可以忽略。将恒定流动的原理应用于恒定流动的流管,并且该流管具有足够小的横横截面积,以至于任何给定横截面积上的速度可认为是常数,如图2所示,对于满足上述条件的流管的断面①和断面②之间的区域,因为不可能有穿过流管壁面的流动,因此在断面①单位时间内流入的质量等于在断面②单位时间内流出的质量。如果在断面①处流管的截面面积为δ A1,流体速度为P1,而其密度为P1,在断面 ②处截面面积为S A2,流体速度为μ 2,而其密度为P 2,则在断面①单位时间内流入的质量等于SA1P1P1,在断面②单位时间内流出的质量等于3442口2,于是则有下式成立δ A1 U1P1= δ A2 U2P2 = C(式子 1)其中,速度μ工和μ 2与横截面面积δ A1和δ A2成直角测量。对于流体在实际的圆管或其他管道的流动过程,流体的速度从一侧管壁到另一侧管壁是变化的,所以上述式子中的断面上的流体速度应该用该断面上的平均速度代替,由此式子1可以改写成下式的形式P1A1JI1 = P2A2JI2 = m (式子 2)图3示出了运动中的烟尘颗粒(图中简称尘粒)的受力情况,此时,烟尘颗粒主要受自身重力、浮力和沉降时的阻力的作用。重力和沉降方向一致,浮力和沉降方向相反,重力和浮力的差值为烟尘颗粒的沉降力Fe。烟尘颗粒在受到沉降力的作用向下运动,由于气体介质阻力不断增加,所以气体介质阻力很快与沉降力达到平衡。不妨假设烟尘颗粒的形状为球形,则可以得出以下两式Fc = fd3g(/ c —厂)(式子 3)6F = ξ ^2p^'(式子 4)8其中,F。为烟尘颗粒的沉降力,单位为牛(N),F为气体介质的阻力,单位也为牛 (N) ;d为烟尘颗粒的直径,单位为m; P。为烟尘颗粒的密度,单位为kg/m3; P为含尘颗粒的密度,单位为kg/m3;g为重力加速度,单位为m/s2,ξ为烟本文档来自技高网
...

【技术保护点】
1.一种烟气在线监测仪中的检测设备,包括一检测探头,所述检测探头插入到烟道中,检测探头的尾部通过安装法兰固定在烟道壁上,光学检测部件固定在检测探头的尾部,在检测探头内部设有光学窗片,所述光学窗片的外周与检测探头的内壁相接触并密封,其特征在于,在光学窗片和检测探头头部入口之间的检测探头内部空间还设置防尘结构,所述防尘结构包括沿检测探头轴向依次设置的至少一段防尘模块,每段防尘模块内形成沿检测探头轴向贯穿的气体通道,并且气体通道靠近光学窗片一侧的口径大于靠近检测探头头部一侧的口径。

【技术特征摘要】

【专利技术属性】
技术研发人员:崔厚欣
申请(专利权)人:北京雪迪龙科技股份有限公司
类型:发明
国别省市:11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1