基于深度学习的遥感影像自动解译方法、装置、设备、及介质制造方法及图纸

技术编号:42681144 阅读:22 留言:0更新日期:2024-09-10 12:31
本发明专利技术提供了一种基于深度学习的遥感影像自动解译方法、装置、设备、及介质,通过获取同一传感器卫星在不同区域、不同时期的多期遥感影像,并对所述遥感影像进行预处理;调用预训练的卷积神经网络对所述多期遥感影像进行多层卷积和池化操作以生成不同层次的特征图,并对所述不同层次的特征图进行融合成地物目标的综合表征,调用预训练的分类器对所述地物目标的综合表征进行分类,以生成分类结果,并将分类结果进行整合操作后,以表格的形式进行输出,其中,整合操作包括对所述分类结果的为每种类型的扰动图斑分配不同的颜色、使用不同的形状对扰动图斑进行标注、以及描绘出每个扰动图斑的边界,解决了人工解译效率低下,且准确性不高的问题。

【技术实现步骤摘要】

本专利技术涉及遥感影像解译领域,特别涉及一种基于深度学习的遥感影像自动解译方法、装置、设备、及介质


技术介绍

1、遥感影像在环境监测、资源勘查、城市规划等方面具有重要应用。在环境监测中,遥感影像可以用于监测森林覆盖变化、湿地保护、土地利用变化、水资源管理等。在资源勘查中,遥感影像可以帮助识别矿产资源分布、评估农业资源、监测渔业资源等。城市规划方面,遥感影像能够提供城市扩展、交通网络、基础设施建设等方面的关键数据支持。

2、传统的遥感影像解译方法主要依赖于人工分析,即由专业人员通过目视检查和手动标记影像中的特征。这种方法不仅效率低下,而且容易受到人为因素的影响,存在较大的主观性。例如,不同分析人员对同一影像的解读可能会产生不同的结果,导致解译结果的不一致。此外,人工解译还容易受到疲劳、经验不足等因素的影响,进一步增加了解译过程中的误差率。

3、有鉴于此,提出本申请。


技术实现思路

1、本专利技术公开了一种基于深度学习的遥感影像自动解译方法、装置、设备、及介质,旨在提高遥感影像解译的效率本文档来自技高网...

【技术保护点】

1.一种基于深度学习的遥感影像自动解译方法,其特征在于,包括:

2.根据权利要求1所述的一种基于深度学习的遥感影像自动解译方法,其特征在于,所述预处理包括辐射定标、几何校正、以及大气校正。

3.根据权利要求1所述的一种基于深度学习的遥感影像自动解译方法,其特征在于,所述生成不同层次的特征图的表达式为:

4.根据权利要求1所述的一种基于深度学习的遥感影像自动解译方法,其特征在于,还包括:构建用于训练卷积神经网络的训练集,具体为:

5.一种基于深度学习的遥感影像自动解译装置,其特征在于,包括:

6.根据权利要求5所述的一种基于深度学...

【技术特征摘要】

1.一种基于深度学习的遥感影像自动解译方法,其特征在于,包括:

2.根据权利要求1所述的一种基于深度学习的遥感影像自动解译方法,其特征在于,所述预处理包括辐射定标、几何校正、以及大气校正。

3.根据权利要求1所述的一种基于深度学习的遥感影像自动解译方法,其特征在于,所述生成不同层次的特征图的表达式为:

4.根据权利要求1所述的一种基于深度学习的遥感影像自动解译方法,其特征在于,还包括:构建用于训练卷积神经网络的训练集,具体为:

5.一种基于深度学习的遥感影像自动解译装置,其特征在于,包括:

6.根据权利要求5所述的一种基于深度学习的遥感影像自动解译装置,其特征在于,所述预处理包括辐射定标、几何校正、以及大气校正。

7...

【专利技术属性】
技术研发人员:陈志景蔡文杰王晓强韩贵州潘海榕
申请(专利权)人:厦门易景软件工程有限公司
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1