任务模型的合并方法、媒体数据的处理方法和装置制造方法及图纸

技术编号:41967921 阅读:27 留言:0更新日期:2024-07-10 16:49
本申请公开了一种任务模型的合并方法、媒体数据的处理方法和装置,属于人工智能技术领域。方法包括:获取至少两个第一任务模型,各个第一任务模型包括结构相同的第一网络块,第一任务模型还包括除第一网络块之外的第一部分;对各个第一任务模型包括的第一网络块进行合并,得到第一合并块;将第一合并块和各个第一任务模型包括的第一部分进行拼接,得到第一合并模型;对第一合并模型进行训练,得到第一目标模型;在第一目标模型满足合并结束条件的情况下,将第一目标模型作为多任务模型。本申请实现了合并不同的模型,得到第一合并模型,并对第一合并模型进行训练得到多任务模型,提高了多任务模型的准确性,丰富了应用场景,降低了维护成本。

【技术实现步骤摘要】

本申请实施例涉及人工智能,特别涉及一种任务模型的合并方法、媒体数据的处理方法和装置


技术介绍

1、在人工智能
中,可以通过任务模型对应用场景涉及的媒体数据进行如分类、翻译、分割等的任务处理。在一些情况下,由于应用场景或任务处理等方面的差异,导致需要不同的任务模型来对媒体数据进行处理。例如,通过一个任务模型对剧本文本进行多情绪标签和多情绪等级的情绪识别,通过另一个任务模型对小说文本进行情绪分类,通过又一个任务模型对影视剧台词进行多情绪识别。

2、在实际应用时,任务模型的功能、应用场景等较为单一,且维护多个任务模型需要较高的维护成本。基于此,可以将多个任务模型合并成一个多任务模型,而如何进行任务模型的合并成为一个亟需解决的问题。


技术实现思路

1、本申请提供了一种任务模型的合并方法、媒体数据的处理方法和装置,可以提高多任务模型的准确性,丰富应用场景,降低维护成本。所述技术方案包括如下内容。

2、第一方面,提供了一种任务模型的合并方法,所述方法包括:

3、获取至少两个第一本文档来自技高网...

【技术保护点】

1.一种任务模型的合并方法,其特征在于,所述方法包括:

2.根据权利要求1所述的方法,其特征在于,所述对所述第一合并模型进行训练,得到第一目标模型,包括:

3.根据权利要求2所述的方法,其特征在于,所述通过所述第一合并模型对所述任一个第一任务模型的样本媒体数据进行对应的任务处理,得到所述任一个第一任务模型对应的第一预测结果,包括:

4.根据权利要求3所述的方法,其特征在于,所述第一合并块包括至少一个特征提取网络;所述通过所述第一合并块对所述任一个第一任务模型的样本媒体数据进行特征提取,得到第一样本特征,包括:

5.根据权利要求4所述的方法,...

【技术特征摘要】

1.一种任务模型的合并方法,其特征在于,所述方法包括:

2.根据权利要求1所述的方法,其特征在于,所述对所述第一合并模型进行训练,得到第一目标模型,包括:

3.根据权利要求2所述的方法,其特征在于,所述通过所述第一合并模型对所述任一个第一任务模型的样本媒体数据进行对应的任务处理,得到所述任一个第一任务模型对应的第一预测结果,包括:

4.根据权利要求3所述的方法,其特征在于,所述第一合并块包括至少一个特征提取网络;所述通过所述第一合并块对所述任一个第一任务模型的样本媒体数据进行特征提取,得到第一样本特征,包括:

5.根据权利要求4所述的方法,其特征在于,所述首个特征提取网络包括至少一层子网络,任一层子网络包括注意力层和前馈层;所述通过所述首个特征提取网络对所述任一个第一任务模型的样本媒体数据进行特征提取,得到所述首个特征提取网络的输出数据,包括:

6.根据权利要求3所述的方法,其特征在于,所述通过所述任一个第一任务模型包括的第一部分,基于所述第一样本特征确定所述任一个第一任务模型对应的第一预测结果,包括:

7.根据权利要求2所述的方法,其特征在于,所述根据各个第一任务模型对应的第一预测结果,对所述第一合并模型进行训练,得到第一目标模型,包括:

8.根据权利要求7所述的方法,其特征在于,所述根据各个第一任务模型对应的目标损失,对所述第一合并模型进行训练,得到第一目标模型,包括:

9.根据权利要求1所述的方法,其特征在于,所述方法还包括:

10.根据权利要求9所述的方法,其特征在于,任一个第一精度指标对应的精度指标阈值基于所述任一个第一精度指标对应的第一任务模型的精度指标确定。

11.根据权利要求1所述的方法,其特征在于,所述第...

【专利技术属性】
技术研发人员:郭卉
申请(专利权)人:腾讯科技深圳有限公司
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1