点云语义分割的方法、装置、设备及存储介质制造方法及图纸

技术编号:41371205 阅读:24 留言:0更新日期:2024-05-20 10:16
本申请公开了一种点云语义分割的方法、装置、设备及存储介质,属于涉及计算机技术领域。该方法包括:获取待处理的点云数据;点云数据是通过第一激光雷达和第二激光雷达采集的;分别提取第一激光雷达的垂直视场范围内的点云数据对应的第一深度视角RV图像特征信息、以及第二激光雷达的垂直视场范围内的点云数据对应的第二RV图像特征信息;对第二RV图像特征信息进行图像压缩处理,以获得第三RV图像特征信息;根据第一RV图像特征信息和第三RV图像特征信息,获得目标RV图像特征信息;利用预先训练的语义分割模型,对所述目标RV图像特征信息进行语义分割处理,以获得点云语义分割的结果。本申请实现了降低点云语义分割处理的计算量和耗时。

【技术实现步骤摘要】

本申请涉及计算机,具体涉及智能交通和自动驾驶等,特别涉及一种点云语义分割的方法、装置、设备及存储介质


技术介绍

1、为了实现对周围环境的感知,自动驾驶车辆通常需要装配激光雷达。激光雷达以一定频率向外发射线束,这些线束在接触到自车周围的物体后会反射回来被激光雷达接收,生成原始的点云数据。点云的语义分割可以是指为激光雷达生成的每个点云赋予不同的语义,以实现对点云的分类。例如,语义可以包括建筑物、道路、植被、行人、车辆等。

2、目前,相关技术中的点云语义分割方案包括基于单点(point)的点云语义分割方法、基于体素(voxel)的点云语义分割方法、以及基于深度视角(range view,rv)的点云语义分割方法。但是,相关技术中的方案对处理多激光雷达点云数据仍存在计算量较大、数据处理的耗时较高等问题。


技术实现思路

1、本申请提供了一种点云语义分割的方法、装置、设备及存储介质,解决了对点云语义分割处理的计算量较大,耗时较高的问题,所述技术方案如下:

2、第一方面,提供了一种点云语义分割的方本文档来自技高网...

【技术保护点】

1.一种点云语义分割的方法,其特征在于,所述方法包括:

2.根据权利要求1所述的方法,其特征在于,所述对所述第二RV图像特征信息进行图像压缩处理,以获得第三RV图像特征信息,包括:

3.根据权利要求1所述的方法,其特征在于,所述根据第一RV图像特征信息和所述第三RV图像特征信息,获得目标RV图像特征信息,包括:

4.根据权利要求1所述的方法,其特征在于,所述分别提取所述第一激光雷达的垂直视场范围内的点云数据对应的第一深度视角RV图像特征信息、以及所述第二激光雷达的垂直视场范围内的点云数据对应的第二RV图像特征信息,包括:

>5.根据权利要求1...

【技术特征摘要】

1.一种点云语义分割的方法,其特征在于,所述方法包括:

2.根据权利要求1所述的方法,其特征在于,所述对所述第二rv图像特征信息进行图像压缩处理,以获得第三rv图像特征信息,包括:

3.根据权利要求1所述的方法,其特征在于,所述根据第一rv图像特征信息和所述第三rv图像特征信息,获得目标rv图像特征信息,包括:

4.根据权利要求1所述的方法,其特征在于,所述分别提取所述第一激光雷达的垂直视场范围内的点云数据对应的第一深度视角rv图像特征信息、以及所述第二激光雷达的垂直视场范围内的点云数据对应的第二rv图像特征信息,包括:

5.根据权利要求1所述的方法,其特征在于,所述分别提取所述第一激光雷达的垂直视场范围内的点云数据对应的第一深...

【专利技术属性】
技术研发人员:刘星林金表董博
申请(专利权)人:九识苏州智能科技有限公司
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1