一种基于多阶段特征分析视网膜血管图像分割方法技术

技术编号:40548325 阅读:18 留言:0更新日期:2024-03-05 19:06
本发明专利技术公开了一种基于多阶段特征分析视网膜血管图像分割方法,提出了一种通过混合池化方法实现多尺度通道注意力机制的跳跃连接,分为两个阶段:第一个阶段对于来自编码器不同分辨率的特征进行融合,将使用不同自适应池化操作得到的前景特征映射和背景特征映射分别使用通道注意力机制进行独立地特征分析,第二个阶段通过使用不同空洞率的空洞卷积进行不同特征映射的全局上下文信息提取;针对视网膜血管主干区域和末端血管形态差异较大,设计一种混合卷积方式;设计了一种多头自注意力机制,将输入特征映射进行全局上下文信息补充,随后利用位置编码信息与全局特征信息进行融合,使得网络对于分割区域的局部特征更加敏感。

【技术实现步骤摘要】

本专利技术是一种利用神经网络对于视网膜血管图像进行图像分割的方法,属于计算机视觉中的图像分割领域,


技术介绍

1、视网膜血管是全身微循环的一部分,由于青光眼、糖尿病、高血压等疾病会引起其长度、直径、弯曲度等形态变化,通过观察和分析眼底血管,可以预防、诊断和治疗相关疾病。在我国,此类疾病的患者较多,由于传统的诊断过程依赖于医学专家的个人经验和临床判断,很难满足日常诊断需要。随着深度学习技术的不断发展,利用卷积神经网络来自动的提取图像特征,利用此方法可以对于视网膜血管进行自动分割,降低了人工诊断的成本,提升了疾病诊断的效率。但是目前最先进的分割网络仍然不能完全满足当前的实际需要,此领域仍然存在着准确率不足的问题,亟待解决。

2、目前,基于卷积神经网络的视网膜血管分割方法已经取得了很大的进展,基于u-net网络的不同变体常常对于编解码器以及两者之间的颈部网络进行改进,例如引入了不同注意力机制的ma-net方法和sa-unet方法;引入了inception模块的multiresunet方法。尽管上述方法相较于传统的方法已经有了很大的优势,在主流的数据集本文档来自技高网...

【技术保护点】

1.一种基于多阶段特征分析视网膜血管图像分割方法,其特征在于:该方法基于U-Net的架构包含混合卷积模块、多头自注意力模块、通过混合池化方法实现的多尺度通道注意力机制跳跃连接模块的网络结构:

2.根据权利要求1所述的基于多阶段特征分析视网膜血管图像分割方法,其特征在于:

3.根据权利要求2所述的基于多阶段特征分析视网膜血管图像分割方法,其特征在于:

4.根据权利要求2所述的基于多阶段特征分析视网膜血管图像分割方法,其特征在于:

5.根据权利要求1所述的基于多阶段特征分析视网膜血管图像分割方法,其特征在于:

【技术特征摘要】

1.一种基于多阶段特征分析视网膜血管图像分割方法,其特征在于:该方法基于u-net的架构包含混合卷积模块、多头自注意力模块、通过混合池化方法实现的多尺度通道注意力机制跳跃连接模块的网络结构:

2.根据权利要求1所述的基于多阶段特征分析视网膜血管图像分割方法,其特征在于...

【专利技术属性】
技术研发人员:王素玉王宇鹏
申请(专利权)人:北京工业大学
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1