一种自适应样本定义的ISAR图像目标检测方法技术

技术编号:39977150 阅读:24 留言:0更新日期:2024-01-09 01:14
本发明专利技术公开了一种自适应样本定义的ISAR图像目标检测方法,所述方法包括:图像数据预处理,利用图像标注软件对图像中待检测的目标进行标注,获取到图像中目标的中心点坐标(x,y),目标的宽w和高h;自适应样本定义,采用IoU的平均值m<subgt;g</subgt;和标准差v<subgt;g</subgt;之和m<subgt;g</subgt;+v<subgt;g</subgt;作为IoU阈值,可以自适应地从合适的金字塔层级中为每个目标选择足够多的正样本;使用FCOS模型对预处理后的训练集进行训练;使用训练得到的网络对测试集进行测试。本发明专利技术的有益效果在于,可以自适应地从合适的金字塔层级中为每个目标选择足够多的正样本,提高算法的目标检测性能。

【技术实现步骤摘要】

本专利技术涉及计算机领域中的深度学习,具体为一种自适应样本定义的isar图像目标检测方法。


技术介绍

1、逆合成孔径雷达(inverse synthetic aperture radar,isar)作为一种新体制雷达,能够对飞机、导弹、舰船、卫星等运动目标进行高分辨二维成像,在战略防御、战术武器、反卫星等军事领域以及未来的空中、空间交通管制等民事领域中都有重要的应用价值。由于isar成像的特殊性,大幅面isar图像中的目标面临着稀疏分布和像素占比小等问题。为了解决上述问题,一些isar图像目标检测方法被提出,但这些方法绝大数属于基于锚框(anchor-based)的检测器,其检测精度与预定义锚框的质量有关。虽然anchor-based方法在isar图像目标检测领域取得了一定的成功,但仍存在一定的局限性:(1)锚框会引入额外的超参数,基于先验知识设定的超参数一定程度上降低了网络的泛化能力,当检测任务发生变化时,需要重置超参数以避免检测性能变差;(2)由于检测目标稀疏分布,大多数锚框往往只包含背景像素,只有少数锚框包含舰船目标,这将导致负样本远远多于正样本,从本文档来自技高网...

【技术保护点】

1.一种自适应样本定义的ISAR图像目标检测方法,其特征在于,所述方法包括:

2.根据权利要求1所述的自适应样本定义的ISAR图像目标检测方法,其特征在于,所述步骤S1中,图像总数为9000幅,随机抽取其中的6000幅图像为训练集,其余3000幅图像为测试集并将训练集的图像尺寸统一缩放为800pixel×800pixel。

3.根据权利要求1所述的自适应样本定义的ISAR图像目标检测方法,其特征在于,所述步骤S2还包括:

4.根据权利要求1所述的自适应样本定义的ISAR图像目标检测方法,其特征在于,所述步骤S3中,采用CIoU和Focal loss作为...

【技术特征摘要】

1.一种自适应样本定义的isar图像目标检测方法,其特征在于,所述方法包括:

2.根据权利要求1所述的自适应样本定义的isar图像目标检测方法,其特征在于,所述步骤s1中,图像总数为9000幅,随机抽取其中的6000幅图像为训练集,其余3000幅图像为测试集并将训练集的图像尺寸统一缩放为800pixel×800pixel。

3.根据权利要求1所述的自适应样本定义的isar图像目标检测方法,其...

【专利技术属性】
技术研发人员:刘宗信朱明明刘衍军赵玉磊刘特焦海松马晶玺乔兴文赵一兵
申请(专利权)人:中国人民解放军九五八四一部队
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1