一种基于数理串联增强深度学习方法的抛射落点预测算法技术

技术编号:39846568 阅读:14 留言:0更新日期:2023-12-29 16:44
本发明专利技术涉及运动分析技术领域,具体地涉及一种基于数理串联增强深度学习方法的抛射落点预测算法,包括:利用传感器装置采集抛射物运动过程中的抛出初始数据;将抛出初始数据导入到物理模型中,用于模拟真实的运动过程;将物理模型生成的数据与抛出初始数据进行特征融合;设计深度学习模型,接收特征融合后的数据作为输入,以提取和学习抛射物运动模式的特征表示;使用已标注的训练数据集,对深度学习模型进行训练,通过优化算法和反向传播,调整模型参数,准确预测抛射物的落点位置;在预测阶段,将抛出初始数据输入模型,输出预测的落点位置

【技术实现步骤摘要】
一种基于数理串联增强深度学习方法的抛射落点预测算法


[0001]本专利技术涉及运动分析
,具体地涉及一种基于数理串联增强深度学习方法的抛射落点预测算法


技术介绍

[0002]在许多领域,如体育训练

机器人技术等,预测抛射物的落点位置是一个重要的问题

例如,在篮球比赛中,预测球的落点可以帮助球员制定更准确的投篮策略

[0003]传统的方法通常基于物理模型和数学公式来进行抛射物的轨迹计算和落点预测

然而,这些方法通常依赖于严格的假设和精确的参数设置,对于复杂的环境和实际情况的变化往往表现不稳定

近年来,深度学习技术的快速发展为解决抛射物落点预测问题提供了新的可能性

深度学习模型可以从大量的数据中学习抛射物的运动模式和特征,能够更好地适应复杂的环境和实际情况

然而,传统的深度学习方法通常只使用抛出初始数据作为输入,容易导致模型在处理极端情况或缺乏数据的情况下表现不佳

[000本文档来自技高网
...

【技术保护点】

【技术特征摘要】
1.
一种基于数理串联增强深度学习方法的抛射落点预测算法,其特征在于:包括以下步骤:步骤
1、
抛出初始数据采集:利用传感器装置采集抛射物运动过程中的抛出初始数据;步骤
2、
物理模型数据生成:将抛出初始数据导入到物理模型中,通过数值模拟或解析计算生成抛射物的轨迹数据,用于模拟真实的运动过程;步骤
3、
特征融合:将物理模型生成的数据与抛出初始数据进行特征融合;步骤
4、
深度学习模型设计:设计深度学习模型,接收特征融合后的数据作为输入,以提取和学习抛射物运动模式的特征表示;步骤
5、
模型训练与预测:使用已标注的训练数据集,对深度学习模型进行训练,通过优化算法和反向传播,调整模型参数,使其能够准确预测抛射物的落点位置;在预测阶段,将抛出初始数据输入模型,输出预测的落点位置
。2.
根据权利要求1所述的基于数理串联增强深度学习方法的抛射落点预测算法,其特征在于:步骤1中,所述抛出初始数据包括抛射物的位置

速度

加速度

压强
。3.
根据权利要求1所述的基于数理串联增强深度学习方法的抛射落点预测算法,其特征在于:步骤2中,所述轨迹数据包括抛射角度

初始速度

空气阻力
。4.
根据权利要求1所述的基于数理串联增强深度学习方法的抛射落点预测算法,其特征在于:步骤2中,所述物理模型为:;其中,
C
为表示抛射物的空气阻力系数;
H(y)
为表示空气特征的密度函数;
G(v
r
)
为阻力函数;
v
x

【专利技术属性】
技术研发人员:孙健倪鹤鹏于复生张涵何曙光吴乐
申请(专利权)人:山东建筑大学
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1