一种复合型碳质储能材料的制备方法技术

技术编号:39738906 阅读:9 留言:0更新日期:2023-12-17 23:40
一种复合型碳质储能材料的制备方法,天然气热裂解伴生碳和煤与重油共液化沥青共同作为碳前驱体进行共炭化,将共炭化产物利用无机酸或有机酸进行清洗后,并以氢氧化钾

【技术实现步骤摘要】
一种复合型碳质储能材料的制备方法


[0001]本专利技术涉及煤焦油浆态床加氢副产沥青

煤与重油共液化沥青及天然气热裂解制乙炔伴生炭黑资源化利用
,具体涉及一种复合型碳质储能材料的制备方法


技术介绍

[0002]天然气热裂解制乙炔伴生炭黑具有含水量高

粒度小

产量大

品质差的特点,目前没有实现有效利用的技术手段,常进行填埋或作为燃料使用,随着环保与资源循环利用的日益重视,天然气热裂解制乙炔伴生炭黑的高附加值利用成为亟需解决的行业痛点

[0003]用于超级电容器的碳质储能材料的碳前驱体主要来源于煤

煤焦油等煤基原料,石油焦

石油沥青等石油基原料,果壳

椰壳

植物茎叶等生物基原料以及淀粉

酚醛树脂等高分子材料,普遍存在因原料成本高

加工流程长

制备储能材料收率低导致技术经济性竞争力不足的缺陷,而且煤基与石油基原料的品质一般较差

目前还未有针对天然气基原料制备用于超级电容器的碳质储能材料的先例

[0004]专利
CN201620349559
提供了一种利用炭黑制备活性炭的系统,采用二氧化碳作为活化剂对炭黑进行物理活化以提升比表面积制备常规活性炭,但物理活化提升比表面积能力有限,制备得到的活性炭附加值低
r/>[0005]文章
doi:10.1016/S1872

5813(21)60006

3(
朱俊生
,
丁晓波
,
曹景沛
,
张双全
,
岳晓明
,
胡光洲
.
褐煤基多孔炭
/CoNi2S4复合材料的制备及电容特性研究
)
公开了以褐煤为碳前驱体,使用
KOH
溶液萃取

活化后制得煤基多孔炭,并利用简单的水热法将褐煤基多孔碳与
CoNi2S4复合制备得到用于超级电容器的碳质储能材料,质量比电容在电流密度
4A/g
下达到
1318.2F/g
,但在
4000
次充放电循环后电容保持率仅为
80.9


[0006]目前天然气热裂解制乙炔伴生炭黑的利用存在着附加值低

产品性能不高的问题,以及用于超级电容器用的碳质储能材料普遍存在着原料品质差

加工流程长

介孔比表面积占比低

制备储能材料收率低或成本高等问题

[0007]可以利用天然气热裂解制乙炔伴生炭黑的灰分少

粒度小

碳含量高的炭黑制备用于超级电容器用的碳质储能材料的制备,以解决现有技术中存在的上述问题


技术实现思路

[0008]为了克服上述现有技术的不足,本专利技术的目的在于提供一种复合型碳质储能材料的制备方法,充分利用炭黑与煤焦油浆态床加氢副产沥青或煤与重油共液化沥青的各自独特优势

充分发挥不同钾源活化剂的协同造孔能力

充分发挥金属硫化物与碳质多孔材料复合的综合性能优势,将炭黑制备成为具有成本优势

性能优势的用于超级电容器的碳质储能材料,从而实现炭黑的高附加值利用

该方法具有加工成本低

综合性能优的特点

[0009]为了实现上述目的,本专利技术采用的技术方案是:
[0010]一种复合型碳质储能材料的制备方法,包括以下步骤:
[0011](1)
天然气热裂解伴生碳和煤与重油共液化沥青共同作为碳前驱体进行共炭化,
将共炭化产物利用无机酸或有机酸进行清洗后,并以氢氧化钾

碳酸钾共同作为活化剂进行活化后得到活化碳;
[0012](2)
将所述活化碳加入至盛有去离子水的反应釜中,并加入无机盐或有机盐形成混悬液,从反应釜底部向混悬液中均匀通入空气,反应后对混悬液进行反复抽滤和水洗,直至滤液
pH
保持不变时对滤饼进行干燥后得到
Fe

Ni

M
负载碳;
[0013](3)

Fe

Ni

M
负载碳放置于管式炉之中,在氢气
/
硫化氢氛围下进行硫化后得到储能材料,所述储能材料为
Fe

Ni

M
硫化物复合碳

[0014]优选地,所述步骤
(1)
中,天然气热裂解伴生碳和煤与重油共液化沥青按照质量比为
6:4

8:2
;氢氧化钾

碳酸钾按照质量比为
6:4

7:3。
[0015]优选地,所述步骤
(1)
中,在进行共炭化时所述炭化温度为
805

835℃
,在进行活化时所述活化剂与碳前驱体的质量比为
3.2:1

3.4:1
,所述活化的温度为
810

830℃
,所述炭化温度及所述活化温度的升温速率均为
8℃/min。
[0016]优选地,所述步骤
(1)
中,所述共炭化的时间为
1.6

1.8
小时,所述共活化的时间为
1.6

1.8
小时

[0017]优选地,所述步骤
(1)
中,天然气热裂解伴生碳还能够和煤焦油沥青按照质量比为
6:4

8:2
共同作为碳前驱体进行所述复合型碳质储能材料的制备

[0018]优选地,所述步骤
(2)
中无机盐或有机盐为镍盐

亚铁盐或金属
M
盐,控制反应釜内温度为
42℃
,开启搅拌,从反应釜底部向混悬液中均匀通入空气,反应
2.5
小时

[0019]优选地,所述步骤
(2)
中镍盐为六水合硫酸镍或十二烷基苯磺酸镍中的一种或多种;
[0020]所述亚铁盐为七水合硫酸亚铁或十二烷基苯磺酸亚铁中的一种或多种;
[0021]所述金属
M
为七水合硫酸钴

十二烷基苯磺酸钴中的一种或多种

[本文档来自技高网...

【技术保护点】

【技术特征摘要】
1.
一种复合型碳质储能材料的制备方法,其特征在于,包括以下步骤:
(1)
天然气热裂解伴生碳和煤与重油共液化沥青共同作为碳前驱体进行共炭化,将共炭化产物利用无机酸或有机酸进行清洗后,并以氢氧化钾

碳酸钾共同作为活化剂进行活化后得到活化碳;
(2)
将所述活化碳加入至盛有去离子水的反应釜中,并加入无机盐或有机盐形成混悬液,从反应釜底部向混悬液中均匀通入空气,反应后对混悬液进行反复抽滤和水洗,直至滤液
pH
保持不变时对滤饼进行干燥后得到
Fe

Ni

M
负载碳;
(3)

Fe

Ni

M
负载碳放置于管式炉之中,在氢气
/
硫化氢氛围下进行硫化后得到储能材料,所述储能材料为
Fe

Ni

M
硫化物复合碳
。2.
根据权利要求1所述的一种复合型碳质储能材料的制备方法,其特征在于,所述步骤
(1)
中,天然气热裂解伴生碳和煤与重油共液化沥青按照质量比为
6:4

8:2
;氢氧化钾

碳酸钾按照质量比为
6:4

7:3。3.
根据权利要求1所述的一种复合型碳质储能材料的制备方法,其特征在于,所述步骤
(1)
中,在进行共炭化时所述炭化温度为
805

835℃
,在进行活化时所述活化剂与碳前驱体的质量比为
3.2:1

3.4:1
,所述活化的温度为
810

830℃
,所述炭化温度及所述活化温度的升温速率均为
8℃/min。4.
根据权利要求3所述的一种复合型碳质储能材料...

【专利技术属性】
技术研发人员:杨涛杨程霍鹏举杨天华周存辉朱永红杨海龙常方圆李伟张生娟李琦闻容基王亦颿杨帆陈金霞
申请(专利权)人:陕西延长石油集团有限责任公司
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1