当前位置: 首页 > 专利查询>长春大学专利>正文

一种基于固相法改变烧结温度制备制造技术

技术编号:39576311 阅读:7 留言:0更新日期:2023-12-03 19:27
本发明专利技术涉及固体氧化物燃料电池的氧离子导体制造技术领域,公开了一种基于固相法改变烧结温度制备

【技术实现步骤摘要】
一种基于固相法改变烧结温度制备Na
0.5
Bi
0.47
Sr
0.02
TiO3‑
δ
氧离子导体方法


[0001]本专利技术涉及固体氧化物燃料电池的氧离子导体制造
,特别涉及一种基于固相法改变烧结温度制备
Na
0.5
Bi
0.47
Sr
0.02
TiO3‑
δ
氧离子导体方法


技术介绍

[0002]近年来,由于全球环境的日益恶化以及人们环保意识的逐渐提高,开发和使用具有高效可靠的新能源势在必行

固体氧化物燃料电池
(SOFC)
能够直接将化学能转化为电能,有着较高的能量转换效率,因此固体氧化物燃料电池
(SOFC)
的技术研发和产业化进程正在加速推进

单个燃料电池由多孔阴极

阳极和电解质组成,电解质材料是燃料电池的核心部分

具有
ABO3
钙钛矿结构的
Na
0.5
Bi
0.5
TiO3(NBT)
氧离子导体在中低温下具有较高的离子电导率以及较好的稳定性被广泛应用于固体氧化物燃料电池的电解质材料

为了进一步提高离子电导率,通过离子掺杂来进行掺杂改性是目前最常用的方法

根据文献中的相关报道可知,
Na
0.5
Bir/>0.47
Sr
0.02
TiO3‑
δ
的晶粒电导率目前已经达到了钙钛矿基氧离子材料的极限,同时在还原气氛下具有较好的稳定性

目前对于晶粒电导率的研究全面而广泛,但对于晶界的研究较少

[0003]但目前
NBT
基氧离子导体的电导率,相变与烧结温度存在着密切的联系

烧结温度的改变会对
Na
0.5
Bi
0.47
Sr
0.02
TiO3‑
δ
的微观结构和电学性能产生一定的影响

烧结温度的变化会影响晶粒的生长过程以及烧结过程中杂相的产生会对电性能产生影响

特别是对于电导率而言,总电导率是晶粒电导率和晶界电导率的总和,尤其是晶界电阻在总电阻中占据主导地位,因此找到最佳的烧结温度有利于减小晶界电阻从而提高总电导率


技术实现思路

[0004]本专利技术提供了一种基于固相法改变烧结温度制备
Na
0.5
Bi
0.47
Sr
0.02
TiO3‑
δ
氧离子导体方法,用以解决
Na
0.5
Bi
0.47
Sr
0.02
TiO3‑
δ
氧离子导体的电学性能和微观结构受不同烧结温度变化的影响的技术问题,同时解决烧结温度的不同导致制备出的
Na
0.5
Bi
0.47
Sr
0.02
TiO3‑
δ
氧离子导体平均晶粒尺寸和致密度发生变化以及对应的电导率产生差异的技术问题

[0005]本专利技术提供了一种基于固相法改变烧结温度制备
Na
0.5
Bi
0.47
Sr
0.02
TiO3‑
δ
氧离子导体方法,包括:
[0006]步骤
1、
对所需要原料进行煅烧处理:
[0007]将
Na2CO3·
H2O、SrCO3、TiO2和
Bi2O3分别在
300℃、180℃、900℃

300℃
进行干燥预处理,以便去除原料中的结合水以及吸附的
CO2和水;
[0008]步骤
2、
研磨煅烧操作:
[0009]将干燥冷却后的原料按照实验配比进行称量,将称量好的药品放在研钵中进行研磨混合,并在
800℃
下煅烧2小时;
[0010]步骤
3、
压片:
[0011]将研磨三次后得到的样品放置于粉末压片机中,并在
200MPa
下压制直径为
13mm
,厚度在设定范围内的致密粉末实体;
[0012]步骤
4、
烧结:
[0013]将致密粉末实体放置于箱式炉中以设定的烧结温度烧结2小时后得到致密的陶瓷片样品;
[0014]步骤
5、
制作电极:
[0015]选取表面光滑平整,内部无裂纹的样品在两面对称位置均匀涂抹导电胶制成为对电极,在烤灯下将样品表面导电胶烤至相对干燥,沾取适量导电胶将银丝和单侧电极连接,在微型箱式炉内
300℃
下烧结
30min
,另一侧重复操作,并将样品在
800℃
下烧结
30min
以去除残留的有机物

[0016]进一步地,步骤3中厚度的设定范围为
0.5mm
±
0.1mm。
[0017]进一步地,步骤2中煅烧和步骤4中烧结的升温速率均为
10℃/min。
[0018]进一步地,所述步骤2中三次研磨具体包括以下步骤:
[0019]第一次研磨,将称量完毕的药品放置玛瑙研钵内,加入设定量的乙醇作为溶剂,进行充分研磨后得到第一次粉状样品放在厢式炉
800℃
下煅烧2小时;
[0020]第二次研磨,待粉末样品煅烧冷却后转移至玛瑙研钵中充分研磨得到第二次粉末状样品,此次不再加入乙醇溶液,将研磨第二次的样品放在厢式炉中
800℃
下煅烧2小时;
[0021]第三次研磨,此次研磨不需要加入乙醇,将样品粉末放置研钵中直接研磨

[0022]进一步地,所述步骤4中设定烧结温度范围为
1000℃

1100℃。
[0023]进一步地,所述步骤4中设定的烧结温度为
1000℃
时,制备出第一种烧结温度下的
Na
0.5
Bi
0.47
Sr
0.02
TiO3‑
δ
氧离子导体

[0024]进一步地,所述步骤4中设定的烧结温度为
1025℃
时,制备出第二种烧结温度下的
Na
0.5
Bi
0.47
Sr
0.02
TiO3‑
δ
氧离子导体

[0025]进一步地,所述步骤4中设定的烧结温本文档来自技高网...

【技术保护点】

【技术特征摘要】
1.
一种基于固相法改变烧结温度制备
Na
0.5
Bi
0.47
Sr
0.02
TiO3‑
δ
氧离子导体方法,其特征在于,包括:步骤
1、
对所需要原料进行煅烧处理:将
Na2CO3·
H2O、SrCO3、TiO2和
Bi2O3分别在
300℃、180℃、900℃

300℃
进行干燥预处理,以便去除原料中的结合水以及吸附的
CO2和水;步骤
2、
研磨煅烧操作:将干燥冷却后的原料按照实验配比进行称量,将称量好的药品放在研钵中进行研磨混合,并在
800℃
下煅烧2小时;步骤
3、
压片:将研磨三次后得到的样品放置于粉末压片机中,并在
200MPa
下压制直径为
13mm
,厚度在设定范围内的致密粉末实体;步骤
4、
烧结:将致密粉末实体放置于箱式炉中以设定的烧结温度烧结2小时后得到致密的陶瓷片样品;步骤
5、
制作电极:选取表面光滑平整,内部无裂纹的样品在两面对称位置均匀涂抹导电胶制成为对电极,在烤灯下将样品表面导电胶烤至相对干燥,沾取适量导电胶将银丝和单侧电极连接,在微型箱式炉内
300℃
下烧结
30min
,另一侧重复操作,并将样品在
800℃
下烧结
30min
以去除残留的有机物
。2.
根据权利要求1所述的基于固相法改变烧结温度制备
Na
0.5
Bi
0.47
Sr
0.02
TiO3‑
δ
氧离子导体方法,其特征在于,步骤3中厚度的设定范围为
0.5mm
±
0.1mm。3.
根据权利要求1所述的基于固相法改变烧结温度制备
Na
0.5
Bi
0.47
Sr
0.02
TiO3‑
δ
氧离子导体方法,其特征在于,步骤2中煅烧和步骤4中烧结的升温速率均为
10℃/min。4.
根据权利要求1所述的基于固相法改变烧结温度制备
Na
0.5
Bi
0.47
Sr
0.02
TiO3‑
δ
氧离子导体方法,其特征在于,所述步骤2中三次研磨具体包括以下步骤:第一次研磨,将称量完毕的药品放置玛瑙研钵内,加入设定量的乙醇作为溶剂,进行充分研磨后得到第一次粉状样品放在厢式炉
800℃
下煅烧2小时;第二次研磨,待粉末样品煅烧冷却后转移至玛瑙研钵中充分研磨得到第二次粉末状样品,此次不再加入乙醇溶液,将研磨第二次的样品放在厢式炉中
800℃
下煅烧2小时;第三次研磨,此次研磨不需要加入乙醇,将样品粉末放置研钵中直接研磨
。5.
根据权利要求1所述的基于固相法改变烧结温度制备
Na
0.5
...

【专利技术属性】
技术研发人员:刘润茹严端廷魏云鹤常笑鹏潘浩东朱沛郭翠婷
申请(专利权)人:长春大学
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1