基于细粒度特征的机翻评估指标的解释方法、解释器模型及计算机可读存储介质技术

技术编号:39006942 阅读:24 留言:0更新日期:2023-10-07 10:38
本发明专利技术属于机器翻译技术领域,提供了一种基于细粒度特征的机翻评估指标的解释方法、解释器模型及计算机可读存储介质。本发明专利技术通过细粒度特征的机翻评估指标的解释方法/解释器模型,解决了机翻质量评估模型的可解释性不足的问题,并且为质量评估分数提供了适用于机翻场景下的细粒度可解释性特征,这些特征有望应用于机翻译文的人工PE阶段,并提升人工PE的效率。率。率。

【技术实现步骤摘要】
基于细粒度特征的机翻评估指标的解释方法、解释器模型及计算机可读存储介质


[0001]本专利技术属于机器翻译
,具体的说,是涉及一种基于细粒度特征的机翻评估指标的解释方法、解释器模型及计算机可读存储介质。

技术介绍

[0002]在传统的人工评估手段中,评估者通常从翻译充分度、译文流畅度、译文可阅读性三个方面,来评估机翻译文的质量,为了获得更快速地评估,一些研究者提出了BLEU等基于规则的评估指标。BLEU指标基于单词或者N

gram的共现率进行评估,蕴含了人工评估中的充分度指标。近年来,为了更好地评估机翻译文的质量,另一部分研究者提出了BertScore、MoverScore和COMET等基于预训练模型的评估指标,这些指标在评估机翻译文的质量,能兼顾译文的充分度和流畅度,是一种更为先进的评估指标。
[0003]但在现阶段,BertScore等更为先进的机翻译文评估指标却没有被大规模使用到机翻译文的评估中,其原因在于:这些基于预训练模型的评估指标缺乏可解释性,基于预训练模型的评估指标,却是一个黑盒结构,难以形成合理本文档来自技高网...

【技术保护点】

【技术特征摘要】
1.一种基于细粒度特征的机翻评估指标的解释方法,其特征在于,包括以下步骤:步骤S1:将机翻原文序列S=(s1,s2,...,s
n
),机翻译文序列H=(h1,h2,...,h
m
),和质量评估分数Q,使用标签拼接到一起;步骤S2:将步骤S1得到的数据输入到预训练模型中,计算得到编码序列:T=Encoder(S;H;Q)其中,Encoder为预训练模型,T为通过预训练模型计算得到的上下文标签;步骤S3:对所述编码序列按照输入位置进行切分,得到原文和译文的上下文表示T
text
,以及质量评估分数的上下文表示T
score
;步骤S4:使用注意力机制,计算原文和译文的上下文表示T
text
,和质量评估分数的上下文表示T
score
的注意权值矩阵:attention=softmax(T
text

T
score
);步骤S5:对注意权值矩阵进行均值池化,获得一维的相对重要性分数State:State=MeanPooling(attention);步骤S6:使用序列标注的标签,标记每个与质量分数相关位置的起止位置,同时为每个位置标记上错误类型,获得细粒度可解释性特征标签;步骤S7:基于所述相对重要性分数State和所述细粒度可解释性特征标签,使用CRF计算得到序列标签Y=(y1,y2,...,y
n+m
):Y=CRF(State)。2.根据权利要求1所述的基于细粒度特征的机翻评估指标的解释方法,其特征在于:所述步骤S1中使用SEP标签拼接。3.根据权利要求2所述的基于细粒度特征的机翻评估指标的解释方法,其特征在于,所述步骤S4中的注意力机制采用点乘注意力机制、连接注意力机制和双线性注意力机制中的一种。4.根据权利要求3所述的基于细粒度特征的机翻评估指标的解释方法,其特征在于,所述步骤S6中使用BIO标签。5.根据权利要求4所述的基于细粒度特征的机翻评估指标的解释方法,其特征在于,所述步骤S6中细粒度可解释性特征标签包括:B

miss漏译开始位置,I

miss漏译中间位置;B

misT错译开始位置,I

misT错译中间位置;B

over过译开始位置,I

over过译中间位置。6.根据权利要求5所述的基于细粒度特征的机翻评估指标的解释方法,其特征...

【专利技术属性】
技术研发人员:朱宪超胡刚
申请(专利权)人:四川语言桥信息技术有限公司
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1