【技术实现步骤摘要】
一种吊物下站人违规行为的检测方法及系统
[0001]本申请涉及违规行为检测领域,尤其涉及一种吊物下站人违规行为的检测方法及系统。
技术介绍
[0002]传统的双目测距方法,使用点对点的特征匹配,其匹配速度较慢且随着距离的增加,左右相机的共同视场逐渐变少,匹配受到环境的影响,最终的测量的距离误差会变大。随着人工智能的发展,使用深度学习方法检测图像特征的应用受到各行各业的关注。目前已有使用关键点检测网络模型定位双目摄像头中的目标位置的方法,但是这类方法对于远距离物体的检测精度有待提高。
技术实现思路
[0003]本申请提供一种吊物下站人违规行为的检测方法及系统,以至少解决远距离物体的检测精度不高的技术问题。
[0004]本申请第一方面实施例提出一种吊物下站人违规行为的检测方法,所述方法包括:
[0005]步骤1:获取固定在待检测场景左边的第一相机拍摄的图片信息和固定在待检测场景右边的第二相机拍摄的图片信息;
[0006]步骤2:将所述第一相机拍摄的图片信息和所述第二相机拍摄的图片信息输入预 ...
【技术保护点】
【技术特征摘要】
1.一种吊物下站人违规行为的检测方法,其特征在于,所述方法包括:步骤1:获取固定在待检测场景左边的第一相机拍摄的图片信息和固定在待检测场景右边的第二相机拍摄的图片信息;步骤2:将所述第一相机拍摄的图片信息和所述第二相机拍摄的图片信息输入预先训练好的YoloV7目标检测模型中,得到检测目标的定位框,其中,所述检测目标包括吊钩和人员头部;步骤3:利用ORB目标点匹配算法对各定位框中的目标进行匹配,得到第一相机和第二相机中相同的目标;步骤4:确定待检测场景中各目标的水平距离和深度距离,并基于各目标的水平距离和深度距离判断是否存在吊物下站人的违规行为;其中,所述第一相机与所述第二相机平行放置。2.如权利要求1所述的方法,其特征在于,所述YoloV7目标检测模型的训练过程包括:获取预设时段内各时刻第一相机拍摄的图片信息和第二相机拍摄的图片信息;对各所述图片信息中的人员头部和吊钩进行标注,并对标注后的图片进行预处理;将预处理后的图片信息输入初始的YoloV7网络模型中,将分类损失、定位损失和置信度损失的总体损失作为模型的损失函数,利用自适应矩阵估计Adam优化算法对所述模型进行训练,得到训练好的YoloV7目标检测模型。3.如权利要求1所述的方法,其特征在于,所述步骤3之前还包括:基于所述检测目标的定位框判断人员与吊钩在水平方向上是否有交集,若无交集,则判断无吊物下站人违规行为,否则进入步骤3。4.如权利要求3所述的方法,其特征在于,所述利用ORB目标点匹配算法对各定位框中的目标进行匹配,得到第一相机和第二相机中相同的目标,包括:将各定位框中的目标提取出来,并转化为灰度目标图像;确定第一相机中各目标图像的各描述子和第二相机中各目标图像的各描述子;分别确定所述第一相机中各目标图像的各描述子与第二相机中各目标图像的各描述子的欧氏距离;基于所述第一相机中各目标图像的各描述子与第二相机中各目标图像的各描述子的欧氏距离及预设的欧式距离阈值,进行第一相机和第二相机中相同目标的匹配。5.如权利要求4所述的方法,其特征在于,所述确定待检测场景中各目标的水平距离和深度距离,包括:确定各个目标在第一相机拍摄的图片中的像素坐标、在第二相机拍摄的图片中的像素坐标;基于各个目标在第一相机拍摄的图片中的像素坐标、在第二相机拍摄的图片中的像素坐标,计算各个目标的视觉差距离;分别根据所述各个目标的视觉差距离,并利用三角测量法分别确定各目标的水平距离和深度距离。6.如权利要求5所述的方法,其特征在于,所述基于各目标的水平距离和深度距离判断是否存在吊物下站人的违规...
【专利技术属性】
技术研发人员:刘绥美,陈可,白杰,王君,张兴,黄山乙,杨欢,张峰,刘祥,杨梦柳,周杰,吴友兴,谭远良,张禹,
申请(专利权)人:中铁高新工业股份有限公司,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。