交通流量预测方法、系统、存储介质及终端设备技术方案

技术编号:37502408 阅读:25 留言:0更新日期:2023-05-07 09:38
本发明专利技术涉及交通流量预测技术领域,具体是一种交通流量预测方法、系统、存储介质及终端设备,包括对交通站点历史流量数据,划分周期性数据,更新周期性的节点依赖矩阵;利用局部时空注意力提取不同周期的流量周期性特征;使用权重分配注意力对周期性数据分配不同的权重,实现数据不同周期的侧重;利用全局注意力网络,将提取的周期性特征再进行提取全局特征,获得最终预测值。本发明专利技术有效地捕捉了数据在不同周期的流量特征,并对不同周期的交通流量特征进行融合和分配权重,通过全局时空注意力提取全局的时空特征,通过模型结合了周期权重特征和全局时空特征,从而实现捕捉交通流量的周期性、空间依赖性和时间依赖性。空间依赖性和时间依赖性。空间依赖性和时间依赖性。

【技术实现步骤摘要】
交通流量预测方法、系统、存储介质及终端设备


[0001]本专利技术涉及交通流量预测
,尤其是涉及一种交通流量预测方法、系统、存储介质及终端设备。

技术介绍

[0002]准确的交通预测对于提高智能交通系统的安全性、稳定性和效率至关重要。虽然目前提出了许多时空分析方法,准确的交通预测仍然面临着挑战。在时间和空间维度上建模交通数据的动态,捕捉交通数据的周期性和空间异质性,这一问题导致难以进行长期预测。
[0003]目前,许多城市都在努力提高智能交通系统(ITS)的性能。交通流量预测已成为智慧城市发展中交通规划、控制和状态评估不可或缺的一部分。交通预测是利用观测到的历史交通数据对城市交通数据进行预测,准确的交通预测有助于减少道路拥堵,促进城市交通路网管理,甚至提高交通效率。交通数据是一种时间序列数据,由部署的道路传感器按固定的时间间隔连续记录。尽管近年来,人们在交通流量预测这一领域做了大量的研究来提高预测性能,但它仍然面临着一些挑战。交通数据是具有复杂时间相关性和动态空间相关性的时空数据。同时交通数据作为一种时间序列数据,具有特定的周期性本文档来自技高网...

【技术保护点】

【技术特征摘要】
1.一种交通流量预测方法,其特征在于,包括:处理周期性数据,基于不同周期选择不同的流量数据作为输入,包括对交通站点历史流量数据,划分周期性数据,更新周期性的节点依赖矩阵;对不同周期数据进行时空特征的提取,将处理好的周期性数据分别送入周期性空间注意力模块来提取不同周期模式的周期性流量特征;交通流量的空间依赖特征的权重分配及融合,利用周期空间注意力单元提取到不同周期模式的周期性流量特征后,将不同周期模式的周期性流量特征送入权重注意力模块,实现交通流量的空间依赖的权重分配及融合;获得未来流量的预测结果,利用全局时空注意力模块,将分配权重的局部时空特征再提取全局的时空特征,获得未来流量的预测结果。2.根据权利要求1所述的交通流量预测方法,其特征在于,所述周期性数据为:,其中,表示原始输入,代表站点数,代表特征数,表示用历史时间步的长度,将原始输入处理为周期性数据:小时数据、天数据、周数据,其中,为时间步的长度,为处理之后的周期性小时数据的时间间隔周期,为处理之后的周期性天数据的时间间隔周期,为处理之后的周期性周数据的时间间隔周期。3.根据权利要求1所述的交通流量预测方法,其特征在于,所述方法利用周期注意力机制从历史交通流量特征中提取有用的信息,表示为,其中为历史交通流量数据,为需要预测的个时间段的交通流量,表示预测的流量信息,其中表示预测的时间步,代表节点数,表示带输入的模型,表示空间注意力模块的节点嵌入。4.根据权利要求1所述的交通流量预测方法,其特征在于,所述对不同周期数据进行时空特征的提取中,所述时空特征包括小时周期性时空特征提取、天周期性时空特征提取、周时空性特征提取;基于周期性交通数据获取不同周期的时空依赖,基于模型学习到的时空依赖特征通过反向传播自适应的更新节点嵌入矩阵。5.根据权利要求4所述的交通流量预测方法,其特征在于,所述对不同周期数据进行时空特征的提取过程中包括:对时间交通依赖和空间交通依赖进行特征提取。6.根据权利要求1所述的交通流量预测方法,其特征在于,所述交通流量的空间依赖特征的权重分配及融合过程中采用如下公式进行融合:,
其中...

【专利技术属性】
技术研发人员:黄晓辉蓝缘春蒋超杰许嘉杨祝显红
申请(专利权)人:华东交通大学
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1