当前位置: 首页 > 专利查询>SAP欧洲公司专利>正文

基于机器学习的绩效预测制造技术

技术编号:37409548 阅读:22 留言:0更新日期:2023-04-30 09:35
一种方法可以包括:训练一个或多个机器学习模型以预测雇员绩效的下降。可以以联合方式训练机器学习模型以避免个人数据的交换。经训练的机器学习模型可以应用于与雇员相关联的数据,该数据对应于雇员倦怠的一个或多个先行指标。响应于经训练的机器学习模型预测雇员的绩效下降,可以通过应用可解释性算法(诸如夏普利加法解释(SHAP))来识别所预测的雇员的绩效下降的根本原因。可以基于所述根本原因生成包括对所预测的雇员绩效下降的纠正措施的报告。还提供了相关系统和计算机程序产品。告。还提供了相关系统和计算机程序产品。告。还提供了相关系统和计算机程序产品。

【技术实现步骤摘要】
基于机器学习的绩效预测


[0001]本文描述的主题总体上涉及机器学习,更具体地涉及基于机器学习的绩效预测。

技术实现思路

[0002]提供包括计算机程序产品的系统、方法和制品以用于基于机器学习的绩效预测。在一个方面,提供了一种系统。所述系统可以包括至少一个数据处理器和至少一个存储器。该至少一个存储器可以存储在由至少一个数据处理器执行时导致操作的指令。所述操作可以包括:训练一个或多个机器学习模型以预测雇员绩效的下降;将一个或多个经训练的机器学习模型应用于与雇员相关联的数据以预测所述雇员的绩效的下降;响应于一个或多个经训练的机器学习模型预测所述雇员的绩效的下降,确定所预测的所述雇员的绩效的下降的一个或多个根本原因;并至少基于所述一个或多个根本原因而生成报告,该报告包括针对所预测的所述雇员的绩效的下降的纠正措施。
[0003]在一些变体中,本文公开的包括下述特征的一个或多个特征可以任选地包括在任何可行的组合中。可以通过应用可解释性算法来确定对一个或多个机器学习模型的输出有贡献的前k个变量来识别一个或多个根本原因。
[0004]在一些变本文档来自技高网...

【技术保护点】

【技术特征摘要】
1.一种系统,包括:至少一个数据处理器;和存储指令的至少一个存储器,当所述指令由所述至少一个数据处理器执行时,导致包括以下的操作:训练一个或多个机器学习模型来预测雇员的绩效下降;将所述一个或多个经训练的机器学习模型应用于与雇员相关联的数据以预测所述雇员的绩效下降;响应于所述一个或多个经训练的机器学习模型预测所述雇员的绩效下降,确定所预测的所述雇员的绩效下降的一个或多个根本原因;和至少基于所述一个或多个根本原因而生成报告,所述报告包括针对所预测的所述雇员的绩效下降的纠正措施。2.根据权利要求1所述的系统,其中,所述一个或多个根本原因通过应用可解释性算法来确定对所述一个或多个机器学习模型的输出有贡献的前k个数量的变量来识别。3.根据权利要求2所述的系统,其中,所述可解释性算法包括夏普利加法解释(SHAP)。4.根据权利要求1所述的系统,其中,所述一个或多个机器学习模型包括卷积神经网络、循环神经网络、回归模型、基于实例的模型、正则化模型、决策树、随机森林、贝叶斯模型、聚类模型、关联模型、深度学习模型、降维模型和/或集成模型。5.根据权利要求1所述的系统,其中,所述一个或多个机器学习模型的训练包括:在与所述雇员相关联的第一客户端设备处训练第一本地机器学习模型,所述本地机器学习模型至少基于与所述雇员相关联的第一个人数据来训练,以及至少基于经训练的第一本地机器学习模型的第一参数空间,更新部署在服务器处的全局机器学习模型的第二参数空间。6.根据权利要求5所述的系统,其中,所述一个或多个机器学习模型的训练还包括:至少基于第二本地机器学习模型的第三参数空间,更新所述全局机器学习模型的第二参数空间,所述第二机器学习模型被部署在另一雇员的第二客户端设备处,并且所述第二机器学习模型是基于所述另一雇员的第二个人数据来训练的,以及至少基于经更新的全局机器学习模型的第二参数空间,更新所述第一本地机器学习模型的所述第一参数空间和所述第二本地机器学习模型的所述第三参数空间。7.根据权利要求1所述的系统,其中,所述操作还包括:预处理与所述雇员相关联的数据的至少一部分,所述预处理包括执行情感分析以确定所述雇员表现出的情感类型、疲劳程度、警觉程度和/或参与程度。8.根据权利要求1所述的系统,其中,所述与雇员相关联的数据对应于雇员倦怠的一个或多个先行指标。9.根据权利要求1所述的系统,其中,所述与雇员相关联的数据包括所述雇员的身体活动模式、心跳模式、膳食模式和/或睡眠模式。10.根据权利要求1所述的系统,其中,所述与雇员相关联的数据包括与安装在所述雇员的边缘设备上的不同类型的应用交互所花费的时间量。11.根据权利要求1所述的系统,其中,所述与雇员相关联的数据包括最后期限的数量、最后期限的紧迫性和/或会议最后期限的延迟。
...

【专利技术属性】
技术研发人员:SH阿纳曼德拉K克里希南R贾拉加杜古拉P梅农A德索萨S莫汉蒂L布VG罗伊
申请(专利权)人:SAP欧洲公司
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1