当前位置: 首页 > 专利查询>孙旭光专利>正文

外加热金属容器中—高温超高水压一次成形技术、方法与设备技术

技术编号:3694012 阅读:202 留言:0更新日期:2012-04-11 18:40
一种利用水在高温下所产生的巨大内高压,通过热传导(或压力传导),一次成形缩口容器状金属部件的技术、方法和设备。设备由四部分组成:1.高温高压设备:高压容器(1)、外置式电热高温炉(2)、工作水(4);2.温度(或压力)传导设备:高压金属管线(5)、高压阀(7);3.成形设备:凹形模具(12)、中温预热炉(13)、容器毛坯(11)、密封塞头(8);4.控制设备。成形方法分两种:一是压力传导,直接利用高压容器中由高温水所产生的内高压,经由金属管线传导到容器毛坯中,膨胀毛坯壁;二是热传导,通过金属管线,将高压容器中高温水的高温传导到容器毛坯水中,间接加热坯料中的水至高温,产生膨胀坯料壁所需的内高压。本发明专利技术可用于成形各种高强度、厚壁缩口容器状金属部件。

【技术实现步骤摘要】

本专利技术涉及一种全新的缩口容器状金属部件水压一次成形技术、方法与设备。具体的,就是利用水在高温下所产生的巨大的静压力这一技术及相关设备,进行缩口容器状金属部件的一次成形。成形过程中所需内高压来源于高温水所产生的巨大静压力,成形介质为高温超高压水(超临界水),金属坯料是在高温状态下成形。2.
技术介绍
目前通常所说的液压成形(内高压成形)是以液压泵(水泵或油泵)为压力来源,常温流体(水或油)为成形介质,以管材作坯料,通过管材内部施加高压液体把管坯压入到模腔中使其成形为所需工件。具体地是将金属毛坯放入一液压成形组件的模腔中并用液压泵向毛坯内部提供高压流体,以使毛坯向外膨胀与限定模腔表面一致。此方法的缺点及局限①成本较高,需要一高性能高压水泵;②工作压力相对较低,最高工作压力通常为0.3-0.5GPa左右;③升压较为困难,对于普通的液压泵,若要在工作压力范围的基础上再提升0.1GPa,技术要求很高,并且常常较为困难;④所加工的金属部件外表面容易产生扇形微裂隙,因为金属毛坯是在低温刚性状态下膨胀变形;⑤加工高强度金属部件(如钛合金等)受到限制,因是在低温状态下加工;⑥加工厚壁金属材料部件受到限制,因是在低温状态下加工。3.
技术实现思路
本专利技术是一种外加热金属容器中—高温超高压水压一次成形技术、方法与设备。本专利技术是利用水在高温下(超临界流体)所产生的巨大静压力这一技术及相关设备,进行缩口容器状金属部件的一次成形。本方法无论从压力产生机理、成形介质、成形过程中金属所处的状态,还是从设备构件上都与传统的液压成形技术和设备不同,它是一种全新的技术、方法和设备。本专利技术是基于水的状态方程、水的p-V-T关系图、以及下面两组以水为传压介质高温超高压热模拟实验结果提出的①将加满水(约6-7滴)的外径为48mm,内径为8mm,内外径比为1∶6的Rene41钛钼合金高压釜通过锥形塞头加以密封,然后放入由控温仪控制的管式炉中,以外加热的方式按预先设定好的程序逐渐升温。当炉温升至350℃,发现由釜体内部的高温水所产生的巨大内高压使该钛钼合金高压釜体向外膨胀并爆裂一个长27mm、宽11mm的裂口(见图1B-1);②同样的实验方法,将加满水(约8-9滴)的外径为60mm,内径为8mm,内外径比为1∶7.5的两个不锈钢高压釜体通过锥形塞头加以密封,然后放入管式炉中,以外加热的方式按预先设置好的程序逐渐升温。当炉温升至450℃和480℃时,由高压釜内部的高温水所产生的巨大内高压导致两个不锈钢高压釜体均向外膨胀,釜体外径由实验前的60mm分别膨胀变形为63.1mm和64.3mm(见图1B-2)。此现象为我们利用水介质在高温下所产生巨大的静压力,来进行缩口容器状金属部件的一次成形提供了依据。本专利技术的一项内容是一种利用水在高温下所产生的巨大静压力,一次液压成形缩口容器状金属部件的技术(见图2A)。其特点为,成形过程中所需的内高压来源于水在高温下所产生的巨大压力。水的p-V-T关系是水的基本的物理化学性质,水的密度随着温度和压力变化而变化,当压力增高时,流体的密度可以从水蒸气的密度值连续地变化到液体水的密度值。在高温,如200℃、500℃和1000℃时,要维持常温常压下水的密度(1g/cm3),所需外部压力分别要达到0.3GPa、0.8GPa、1.82GPa。换句话说,将充满水的(或充填度为100%)封闭的金属容器分别加热到200℃、500℃和1000℃,容器中的高温水将会产生约0.3GPa、0.8GPa、1.82GPa的压力,并均匀作用于四周容器壁上(见图1A)。我们正是利用水的这一特性来进行缩口容器状金属部件的一次成形。即将充满水或充填一定量水的金属容器毛坯,加以密封,然后通过热传导的方式间接加热容器毛坯中的水至高温。随着水温的升高,容器坯料中由高温水所产生的压力迅速增加,当由高温工作水所产生的压力超过容器毛坯壁所能承受的张力时,膨胀容器毛坯的壁,此时若用凹形模具加以控制,就得到各种既具有外部形态又具有内部形态的双形态的缩口容器状金属部件(见图2A和2B)。水在高温下能够产生用于膨胀容器坯料的巨大的内高压可以从上述两组高温高压实验中得到印证(见图1B-1,图1B-2)。本专利技术第二项内容涉及一种外加热并产生成形缩口容器状金属部件所需内高压的技术及组件(见图4)。其特点是将高温炉置于高压容器外部(外置式电热高温炉),从外部透过高压容器壁间接对高压容器中的工作水进行加热,使其产生成形过程中所需内高压的技术。外加热容器工作时整体温度相同,由于高温条件下容器材料的强度明显降低,故外加热高压容器的工作压力和工作温度相对较低,但外加热高压容器的高压密封性较好。本技术主要由高压容器、外置式电热高温炉、工作水三部分组成。本专利技术第三项内容涉及一种以热传导的方式间接加热容器坯料腔体中的工作水至高温,产生膨胀容器毛坯壁并一次成形缩口容器状金属部件所需内高压的技术及组件其特征在于,首先将高压容器和金属容器坯料中都加满水,然后采用外加热方式加热高压容器中的工作水至高温,以高压容器中的高温工作水为热源,利用高压容器与金属坯料之间的水温差,通过连接高压容器和容器毛坯之间的高压金属管线,以热传导的方式,将高压容器中工作水的高温传导到容器坯料腔体水中,间接加热容器坯料腔体中的水至高温,使其产生膨胀容器坯料壁并一次成形缩口容器状金属部件所需内高压的技术(见图5)。本技术主要包括高压容器、外置式电热高温炉、高压金属管线、金属容器毛坯、以及工作水五个基本组件。本专利技术第四项内容涉及一种以压力传导的方式直接提供膨胀容器毛坯壁,并一次成形缩口容器状金属部件所需内高压的技术及组件其特点是,首先将高压容器中加满水,然后通过外加热的方式加热高压容器中的工作水至高温,当由高温水(超临界水)所产生的压力达到预定的压力时,开启高压容器和金属坯料之间的高压阀,这样由高压容器中高温水所产生的巨大内高压经由高压金属管线传导到容器毛坯腔体中,膨胀容器毛坯的壁使其变形,直至容器坯料的外表面与模具内模表面基本一致的技术(见图6A,6B,6C,6D和6E)。本技术主要包括高压容器、外置式电热高温炉、高压金属管线、高压截止阀、金属容器毛坯、以及工作水六个基本组件。本专利技术第五项内容涉及一种金属容器毛坯预加热的技术及组件。其特征是在模具外面套一中温炉,并透过模具对模腔中的金属容器毛坯进行预加热的技术(见图4)。其作用一是使金属毛坯(无论热传导或压力传导)在热状态下膨胀变形;二是减少热传导过程中热量在容器毛坯中的损失,缩短一次成形所需的时间。本专利技术的第六项内容为一种外加热金属容器中—高温超高压水压一次成形设备。其特征是本设备包含四大部分18个基本组件(见图4)。第一部分为高温高压设备(压力源)包括高压容器(1)、外置式电热高温炉(2)及炉壳(3)、工作水(4);第二部分为温度(或压力)传导设备包括高压金属管线(5)及保温套(6)、高压阀(7);第三部分为成形设备包括凹形模具(12)、中温预热炉(13)及炉壳(14)、模具支架(16)、容器毛坯支架(9)、容器毛坯(11)、密封塞头(8)、金属套圈(10);第四部分为控制设备,包括温度控制设备(2,17)、模具开合及移动控制设备(15,18)。设备特点①采用外加热的本文档来自技高网...

【技术保护点】
一种利用水在高温下所产生的巨大静压力,一次液压成形缩口容器状金属部件的技术。本专利技术是基于水的状态方程、水的p-V-T关系图、以及下面两组高温超高压热模拟实验结果。其技术特点为成形过程中所需的内高压来源于水在高温下所产生的巨大压力。根 据水的p-V-T关系图以及水的状态方程,水的密度随着温度和压力变化而变化,当压力增高时,流体的密度可以从水蒸气的密度值连续地变化到液体水的密度值。在高温,如200℃、500℃和1000℃时,要维持常温常压下水的密度(1g/cm↑[3]),所需外部压力分别要达到0.3GPa、0.8GPa、1.82GPa。换句话说,将充满水的(即充填度为100%)封闭的金属容器分别加热到200℃、500℃和1000℃,容器中的高温水将会产生约0.3GPa、0.8GPa、1.82GPa的内高压,并均匀作用于四周容器壁上。我们正是利用水的这一特性来进行缩口容器状金属部件的一次成形。即利用热传导的方式间接加热金属容器毛坯中的工作水至高温,随着水温的升高,容器坯料中由高温水所产生的压力也迅速增加,当高温水所产生的压力超过容器壁所能承受的张力时,膨胀容器毛坯的壁使其变形,此时若用凹形模具加以控制,就得到各种既具有外部形态又具有内部形态的双形态的缩口容器状金属部件。水在高温下能够产生用于膨胀容器坯料的巨大的内高压可以从以下两组高温高压实验中得到印证。一组是将加满水(约6 -7滴)的外径为48mm,内径为8mm,内外径比为1∶6的Rene41钛钼合金高压釜通过锥形塞头加以密封,然后放入由控温仪控制的管式炉中,以外加热的方式按预先设定好的程序逐渐升温。当炉温升至350℃,发现由釜体内部的高温水所产生的巨大内高压使该钛钼合金高压釜体向外膨胀并爆裂一个长27mm、宽11mm的裂口;第二组实验方法与第一组相同,即将加满水(约8-9滴)的外径为60mm,内径为8mm,内外径比为1∶7.5的两个不锈钢高压釜体通过锥形塞头加以密封,然后放入管式炉中,以外加热的方式按预先设置好的程序逐渐升温。当炉温升至450℃和480℃时,由高压釜内部的高温水所产生的巨大内高压导致两个不锈钢高压釜体均向外膨胀,釜体外径由实验前的60mm分别膨胀变形为63.1mm和64.3mm。此现象为我们利用水介质在高温下所产生巨大的静压力,来进行缩口容器状金属部件的一次成形提供了依据。本专利技术与目前常规的液压成形最大的不同有三点:①压力产生机理(或压...

【技术特征摘要】

【专利技术属性】
技术研发人员:孙旭光
申请(专利权)人:孙旭光
类型:发明
国别省市:11[中国|北京]

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1
相关领域技术
  • 暂无相关专利