一种背孔式片上集成微型红外气体传感器制造技术

技术编号:34959873 阅读:41 留言:0更新日期:2022-09-17 12:39
本发明专利技术提供一种背孔式片上集成微型红外气体传感器,包括:红外探测芯片,设有红外光源、红外探测器、红外光源和红外探测器之间的透气

【技术实现步骤摘要】
一种背孔式片上集成微型红外气体传感器


[0001]本申请涉及气体传感器
,特别涉及一种片上集成微型红外气体传感器。

技术介绍

[0002]随着科技的进步和经济的发展,目前社会正逐步跨入物联网时代,感知节点布设越来越多,进而传感器的需求越来越大,红外气体传感器以其精度高、寿命长、选择性好、不中毒等优点受到了人们广泛的关注和研究,开发出了一系列的红外气体传感器。
[0003]红外气体传感器是一种微型光谱分析器件,通过检测气体分子的特征光谱吸收强弱,实现对气体的浓度进行检测。它与其它类别气体传感器如电化学式、催化燃烧式、半导体式等相比具有应用广泛、使用寿命长、灵敏度高、稳定性好、受环境干扰因素较小、不中毒、不依赖于氧气、适合气体多、性价比高、维护成本低、可在线分析等一系列优点。其广泛应用于石油化工、冶金工业、工矿开采、大气污染检测、农业、医疗卫生等领域。
[0004]随着万物互联技术的发展,对传感器的需求趋于微型化和集成化。目前商用的红外气体传感器多以加热丝或白炽灯作为红外光源,TO封装探测器作为敏感元,通过信号检测和处理实现气体成分检测,其体积较大,难以满足某些特定场合微型化气体传感器的需求。

技术实现思路

[0005]本专利技术的目的在于提供一种背孔式片上集成微型红外气体传感器,以解决现有的红外气体传感器体积过大的技术问题。
[0006]为解决上述技术问题,本专利技术提供一种背孔式片上集成微型红外气体传感器,包括:红外探测芯片,其设有红外光源、与红外光源间隔开的红外探测器、以及位于红外光源和红外探测器之间的透气

隔热结构;微型光学罩,其位于红外探测芯片的上表面,所述微型光学罩上设有至少一个反射面,且微型光学罩和红外探测芯片共同构成一封闭的光学腔室;所述微型光学罩设置为在光学腔室内通过其反射面将红外光源发射的红外光反射至红外探测器;以及信号处理芯片,其集成于红外探测芯片上靠近红外探测器的一侧并与红外探测器电连接;所述背孔式片上集成微型红外气体传感器采用芯片级封装,微型光学罩、红外探测芯片和信号处理芯片采用MEMS加工工艺封装连接。
[0007]所述红外探测芯片设有位于红外光源和红外探测器之间的第二辅助反射面,所述微型光学罩包括与第二辅助反射面相对设置的第一辅助反射面、以及位于第一辅助反射面的两侧的第一主反射面、第二主反射面;所述光学腔室由所述第一辅助反射面、第一主反射面、第二主反射面、和第二辅助反射面共同限定得到。
[0008]所述第一辅助反射面、第一主反射面、第二主反射面均通过在微型光学罩的下表面上镀膜来制作得到,第二辅助反射面通过在红外探测芯片的红外光源和红外探测器之间的衬底上镀膜来制作得到;镀膜材料为在红外波段具有高反射率的材料。
[0009]所述红外光源的数量为一个,所述红外探测器的数量为至少一个,且第一辅助反
射面和第二辅助反射面的形状随红外光源和红外探测器的形状、布局和数量变化,能够辅助红外光传播,能够与红外光的光路形状配合。
[0010]所述透气

隔热结构包括贯穿所述红外探测芯片的透气孔结构和贯穿所述微型光学罩的透气孔结构,或者仅仅包括贯穿所述红外探测芯片的透气孔结构;所述透气孔结构为多边形孔、圆形孔和条状孔结构中的至少一种。
[0011]所述红外光源和红外探测器的至少一个的表面采用滤光材料,所述滤光材料包括窄带滤光片或超结构材料。
[0012]所述红外光源包括MEMS光源或LED光源;所述红外探测器包括热电型探测器芯片或光电型探测器芯片。
[0013]所述背孔式片上集成微型红外气体传感器还包括设置在红外探测器附近的热敏电阻;所述热敏电阻集成在所述微型光学罩、红外探测芯片或信号处理芯片上,或外附于所述背孔式片上集成微型红外气体传感器上;所述热敏电阻的材料为铂金属、半导体或陶瓷。
[0014]所述微型光学罩的材料为铝、铜、塑料、树脂、ABS、硅或玻璃;所述微型光学罩的制备方法为微机械加工、压膜工艺、3D打印技术或MEMS加工工艺。
[0015]所述信号处理芯片由电源模块、信号处理模块和数字逻辑单元组成;所述电源模块设置为向所述红外光源、热敏电阻、信号处理模块和数字逻辑单元提供电压;所述数字逻辑单元包括存储单元和逻辑电路。
[0016]本专利技术的背孔式片上集成微型红外气体传感器采用芯片级封装,微型光学罩、红外探测芯片和信号处理芯片采用MEMS加工工艺封装连接,该从而能够有效减小红外气体传感器体积;此外,透气

隔热结构位于红外探测芯片的红外光源和红外探测器之间,用传感器的隔热结构去替代上方的透气孔,实现了背孔设计,一孔两用,将透气结构与隔热结构相结合,能够有效减少微型化后的内部热干扰问题。另外,本专利技术的背孔式片上集成微型红外气体传感器通过其反射面和红外探测芯片的反射面组成了光学腔室,使得光学腔室的光路实现了折叠式反射结构,使得传感器的厚度尽可能小。由于这种折叠式的反射设计,对光程进行了增长。也就是说,相对于没有反射的、红外光源和红外探测器面对面的这种设计来说,这种折叠式反射设计起到了光程增长的作用;NDIR型气体探测器中,光程增长有利于待测气体分子充分吸收,加大到达红外探测器端的红外光的衰减量,从而提高灵敏度。
附图说明
[0017]为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
[0018]图1为根据本专利技术的一个实施例的一种背孔式片上集成微型红外气体传感器的结构示意图;
[0019]图2为根据本专利技术的一个实施例的一种背孔式片上集成微型红外气体传感器的拆解结构示意图;
[0020]图3为根据本专利技术的一个实施例的一种背孔式片上集成微型红外气体传感器的红外探测芯片的结构示意图;
[0021]图4为根据本专利技术的一个实施例的一种背孔式片上集成微型红外气体传感器的光路示意图;
[0022]图5为根据本专利技术的一个实施例的一种背孔式片上集成微型红外气体传感器的信号处理芯片的结构示意图;
[0023]图6为无隔热结构的片上集成微型红外气体传感器的截面温度分布图;
[0024]图7为根据本专利技术的一个实施例的具有圆形孔隔热结构的背孔式片上集成微型红外气体传感器的截面温度分布图;
[0025]图8为根据本专利技术的一个实施例的具有条形孔隔热结构的背孔式片上集成微型红外气体传感器的截面温度分布图;
[0026]图9为无隔热结构的片上集成微型红外气体传感器、以及根据本专利技术的两个不同实施例的具有圆形孔隔热结构和条形孔隔热结构的背孔式片上集成微型红外气体传感器的截线温度分布对比图。
[0027]以下对附图作补充说明:
[0028]1‑
微型光学罩;2

红外探测芯片;3
‑<本文档来自技高网
...

【技术保护点】

【技术特征摘要】
1.一种背孔式片上集成微型红外气体传感器,其特征在于,包括:红外探测芯片,其设有红外光源、与红外光源间隔开的红外探测器、以及位于红外光源和红外探测器之间的透气

隔热结构;微型光学罩,位于红外探测芯片的上表面,所述微型光学罩上设有至少一个反射面,且微型光学罩和红外探测芯片共同构成一封闭的光学腔室;所述微型光学罩设置为在光学腔室内通过其反射面将红外光源发射的红外光反射至红外探测器;以及信号处理芯片,其集成于红外探测芯片上靠近红外探测器的一侧并与红外探测器电连接;所述背孔式片上集成微型红外气体传感器采用芯片级封装,微型光学罩、红外探测芯片和信号处理芯片采用MEMS加工工艺封装连接。2.根据权利要求1所述的背孔式片上集成微型红外气体传感器,其特征在于,所述红外探测芯片设有位于红外光源和红外探测器之间的第二辅助反射面,所述微型光学罩包括与第二辅助反射面相对设置的第一辅助反射面、以及位于第一辅助反射面的两侧的第一主反射面、第二主反射面;所述光学腔室由所述第一辅助反射面、第一主反射面、第二主反射面、和第二辅助反射面共同限定得到,实现了折叠式的反射设计,对光程进行了增长。3.根据权利要求2所述的背孔式片上集成微型红外气体传感器,其特征在于,所述第一辅助反射面、第一主反射面、第二主反射面均通过在微型光学罩的下表面上镀膜来制作得到,第二辅助反射面通过在红外探测芯片的红外光源和红外探测器之间的衬底上镀膜来制作得到;镀膜材料为在红外波段具有高反射率的材料。4.根据权利要求2所述的背孔式片上集成微型红外气体传感器,其特征在于,所述红外光源的数量为一个,所述红外探测器的数量为至少一个,且第一辅助反射面和第二辅助反射面的形状随红外光源...

【专利技术属性】
技术研发人员:李铁冯立扬王翊周宏王跃林
申请(专利权)人:中国科学院上海微系统与信息技术研究所
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1