一种导电组合物及其制备方法技术

技术编号:34513734 阅读:10 留言:0更新日期:2022-08-13 21:00
本申请涉及电池的技术领域,具体公开了一种导电组合物及其制备方法。一种导电组合物,包括正极材料、负极材料、隔膜和电解液,正极材料和负极材料至少之一包括量子碳素材料,量子碳素材料是由如下重量份的量子碳素单元构成:1.0<粒径<9.0nm的量子碳素单元10~25份、10<粒径<30nm的量子碳素单元40~80份、50<粒径<80nm的量子碳素单元1~10份;量子碳素单元为石墨烯粒子。本申请的组合物具有改善锂电池充放电速度慢的缺陷的效果。池充放电速度慢的缺陷的效果。

【技术实现步骤摘要】
一种导电组合物及其制备方法


[0001]本申请涉及电池的
,更具体地说,它涉及一种导电组合物及其制备方法

技术介绍

[0002]量子碳素是碳元素的一种热力学不稳定但动力学较稳定的亚稳定物质,构成量子碳素的基材是碳素粒子。碳素粒子的粒径为0.6

100nm,粒径为0.6

100nm的碳素粒子即石墨烯,具有较大的硬度,良好的导热性和导电性以及较好的耐磨性等一系列优良性能。
[0003]石墨烯是已知的世上最薄、最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光;导热系数高于碳纳米管和金刚石,常温下其电子迁移率比纳米碳管或硅晶体高,而电阻率比铜或银更低,为目前世界上电阻率最小的材料。石墨烯是由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,其厚度只有一个单碳原子的厚度,即0.335纳米,其碳碳键长为0.142nm。石墨烯得电阻率极低,电子迁移的速度极快,石墨烯材料可应用在石墨烯锂电池中。
[0004]相关技术中,锂离子电池多为以石墨作为负极材料的锂离子电池,而石墨烯材料具有特殊的二维单原子层结构,且石墨烯材料的层间距离要明显大于石墨的层间距,更有利于锂离子的快速嵌入和脱嵌,可大幅度提升锂离子电池充放电速度。
[0005]因此,专利技术人认为需要设计一款石墨烯电池,以改善相关技术中锂电池充放电速度慢的缺陷。

技术实现思路

[0006]为了改善锂电池充放电速度慢的缺陷,本申请提供一种导电组合物及其制备方法。
[0007]第一方面,本申请提供的一种导电组合物及其制备方法,采用如下的技术方案:一种导电组合物,包括正极材料、负极材料、隔膜和电解液,所述正极材料和负极材料至少之一,所述量子碳素材料是由如下重量份的量子碳素单元构成:1.0<粒径<9.0nm的量子碳素单元10~25份、10<粒径<30nm的量子碳素单元40~80份、50<粒径<80nm的量子碳素单元1~10份;所述量子碳素单元为石墨烯粒子。
[0008]通过采用上述技术方案,量子碳素单元本身具有量子的尺寸效应和遂道效应,吸附能力强,不同粒径范围的量子碳素单元可以很好的结合作为电极负极材料;不同粒径的量子碳素单元具有不同的结构,较小粒径的量子碳素单元具有层间化合弯曲结构,因此使得各量子碳素单元之间具有空隙,有利于锂离子穿梭,其中,量子碳素单元表面的弯曲结构也提高了载锂离子的迁移率,增加了导电性;但是该粒径范围下的量子碳素单元的表面会携带各种官能团,使得各量子碳素单元具有自聚的作用,自然形成大颗粒,与其他物质的亲和力较小,因此,需要添加其他粒径范围的量子碳素单元来中和其所带来的缺点,各量子碳素单元通过结合形成多层结构,提供较多锂离子的附着点,有利于提高电池的容量和充放电效率。
[0009]优选的,所述1.0<粒径<9.0nm的量子碳素单元进行改性预处理,所述改性1.0<粒径<9.0nm的量子碳素单元包括以下步骤制备而成:将去离子水作为溶剂,把1.0<粒径<9.0nm的量子碳素单元添加于去离子水中,超声分散,得到料a;将硝酸镍、硝酸钴和去离子水进行混合搅拌反应,溶解后,在添加硫代硫酸钠和溶剂于去离子水中溶解,在进行高压反应,得到混合液,然后将混合液经过离心、过滤、洗涤、干燥制得金属硫化物混合物,再将金属硫化物混合物升温煅烧得到金属氧化物混合物,其中金属氧化物混合物均为多级孔结构;将金属氧化物混合物添加至料a中混合进行升温回流反应,反应完毕,得到混合液,将混合液用去离子水洗涤,过滤,然后在真空干燥箱中干燥即可;其中,硝酸镍、硝酸钴和硫代硫酸钠的重量份比为1:1:(1.1

1.5)。
[0010]通过采用上述技术方案,1.0<粒径<9.0nm的量子碳素单元,粒径越小,量子碳素单元的表面就具有一定弯曲结构,类似于足球表面;粒径在1.0<粒径<9.0nm的量子碳素单元具有良好的化学稳定性,如较大的硬度、良好的导电性以及耐磨性,由于量子碳素单元的粒径小,表面积大,表面能高;并且由于每个量子碳素单元的表面具有弯曲结构,因此使得各量子碳素单元之间具有空隙,有利于锂离子穿梭,其中,量子碳素单元表面的弯曲结构也提高了载锂离子的迁移率,增加了导电性,进而提高锂电池的电化学性能;本申请将硝酸镍、硝酸钴和硫代硫酸钠混合,然后添加到溶剂中反应,制得硫化镍和硫化钴,接着对硫化镍和硫化钴进行升温锻造得到多级孔中空结构的氧化镍和氧化钴,最后将多级孔中空结构的氧化镍和氧化钴附着在量子碳素表面,多级孔中空结构的氧化镍和氧化钴的引入可以很好在一定程度上阻止了量子碳素单元的自聚作用,有利于量子碳素单元比表面积的提升,而量子碳素单元比表面积越大,则越有利于更多的氧化镍和氧化钴在量子碳素单元表面附着,由于氧化镍和氧化钴是以量子碳素单元表面作为基底附着的,可以减少各氧化镍和氧化钴颗粒间的团聚,这种协同作用促进了量子碳素单元与氧化镍和氧化钴之间的分散性,从而也提高了量子碳素单元材料的电化学性能;氧化镍和氧化钴的多级孔中空结构利用其独特的空间结构提供了丰富的嵌脱锂活性位点,有利于提高锂离子的传递,另一方面氧化镍和氧化钴的多级孔中空结构能够有效的缩短电子及离子的传输路径,从而大大增强量子碳素单元的倍率性能,进而提高了量子碳素单元的导电性能。
[0011]优选的,所述10<粒径<30nm的量子碳素单元进行改性预处理,所述改性10<粒径<30nm的量子碳素单元包括以下步骤制备而成:将去离子水作为溶剂,把10<粒径<30nm的量子碳素单元添加于去离子水中,超声分散,得到料c;向料c中添加PdO,再将氨水缓慢滴入料c中,得到混合液料d;将料d投入到水热反应釜中,升温反应,反应完毕,所得产物用去离子水反复清洗,然后在室温条件下自然干燥即可。
[0012]通过采用上述技术方案,PdO为树枝状或者球状结构,当其附着于量子碳素单元表面时,增加了嵌脱锂活性位点,从而有助于量子碳素单元电极材料容量性能的提升;另外,PdO的球状结构也有助于缩短电解液分子及锂离子的扩散路径,并且有助于抵消量子碳素
单元在循环过程中产生的较大的体积变化,并为锂离子提供更多的储存空间,增加量子碳素单元的可逆容量,进而提高了量子碳素单元的电化学性能。
[0013]优选的,所述50<粒径<80nm的量子碳素单元进行改性预处理,所述改性50<粒径<80nm的量子碳素单元包括以下步骤制备而成:将去离子水作为溶剂,把50<粒径<80nm的量子碳素单元添加于去离子水中,超声分散,得到溶液e;再向溶液e中加入联胺和氨水混合液,室温搅拌后得到料f;将氧化镝与料f混合,室温下搅拌反应,再升温反应,反应完毕后,抽滤,水洗至中性,再将过滤物冷冻干燥即可。
[0014]通过采用上述技术方案,氧化镝为针状结构,可以将其附着于量子碳素单元上,各量子碳素单元之间通过氧化镝连接,使得各量子碳素单元形成多层结构,有利于锂离子的传输;另外,氧化镝的针状结构附着在各量子碳素单元之间,量子碳素单元与氧化镝之间的接触面积较大,进一步可以提高氧化镝的导电性能;此外,本文档来自技高网
...

【技术保护点】

【技术特征摘要】
1.一种导电组合物,其特征在于,包括正极材料、负极材料、隔膜和电解液,所述正极材料和负极材料至少之一包括量子碳素材料,所述量子碳素材料是由如下重量份的量子碳素单元构成:1.0<粒径<9.0nm的量子碳素单元10~25份、10<粒径<30nm的量子碳素单元40~80份、50<粒径<80nm的量子碳素单元1~10份;所述量子碳素单元为石墨烯粒子。2.根据权利要求1所述的导电组合物,其特征在于,所述1.0<粒径<9.0nm的量子碳素单元进行改性预处理,所述改性1.0<粒径<9.0nm的量子碳素单元包括以下步骤制备而成:将去离子水作为溶剂,把1.0<粒径<9.0nm的量子碳素单元添加于去离子水中,超声分散,得到料a;将硝酸镍、硝酸钴和去离子水进行混合搅拌反应,溶解后,在添加硫代硫酸钠和溶剂于去离子水中溶解,再进行高压反应,得到混合液,然后将混合液经过离心、过滤、洗涤、干燥制得金属硫化物混合物,再将金属硫化物混合物升温煅烧得到金属氧化物混合物,其中金属氧化物混合物均为多级孔结构;将金属氧化物混合物添加至料a中混合进行升温回流反应,反应完毕,得到混合液,将混合液用去离子水洗涤,过滤,然后在真空干燥箱中干燥即可;其中,硝酸镍、硝酸钴和硫代硫酸钠的重量份比为1:1:(1.1

1.5)。3.根据权利要求1所述的导电组合物,其特征在于,所述10<粒径<30nm的量子碳素单元进行改性预处理,所述改性10<粒径<30nm的量子碳素单元包括以下步骤制备而成:将去离子水作为溶剂,把10<粒径<30nm的量子碳素单元添加于去离子水中,超声分散,得到料c;向料c中添加PdO,再将氨水缓慢滴入料c中,得到混合液料d;将料d投入到水热反应釜中,升温反应,反应完毕,所得产物用去离子水反复清洗,然后在室温条件下自然干燥即可。4.根据权利要求1所述的导电组合物,其特征在于,所述50<粒径<80nm的量子碳素单元进行改性预处理,所述改性50<粒径<80nm的量子碳素单元包括以下步骤制备而成:将去离子水作为溶剂,把50<粒径<80nm的量子碳素单元添加于去离...

【专利技术属性】
技术研发人员:杨新义肖开龙
申请(专利权)人:西部诚业科技发展深圳有限公司
类型:发明
国别省市:

相关技术
    暂无相关专利
网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1