单向导通装置制造方法及图纸

技术编号:3400553 阅读:190 留言:0更新日期:2012-04-11 18:40
一种单向导通装置,包括金氧半场效晶体管及驱动装置,金氧半场效晶体管的源极与汲极是分别作为单向导通装置的P极与N极,驱动装置例如是比较器或放大电路等,用以检测金氧半场效晶体管源极与汲极间的电位差。当P极电位高于N极电位时,驱动装置150便输出一驱动电位至金氧半场效晶体管的闸极使其导通,若P极电位低于N极电位,驱动装置便无法输出开启金氧半场效晶体管所需的驱动电位,此时单向导通装置关闭,故单向导通装置具有单向导通的特性。(*该技术在2022年保护过期,可自由使用*)

【技术实现步骤摘要】
【国外来华专利技术】
本专利技术有关一种单向导通装置,且特别是有关于一种具有低顺向电压的单向导通装置。(2)
技术介绍
在电子电路中,二极管(diode)的使用有相当悠久的历史,其单向导通的特性常被应用于各类电路中,重要性实不亚于电阻及电容,是不可或缺的重要元件。虽然二极管的应用十分广泛,但不可讳言的是,二极管一直存在着本质上的缺陷,就是导通时的顺向电压仍嫌太高。一般的二极管其顺向电压约为0.7伏特左右,此是物理特性并无法消除。虽然借重半导体制程的改进已可制出顺向电压较低的萧特基二极管(SchottkyDiode),但萧特基二极管约0.4伏特的顺向电压,对许多需要单向导通特性且电压较低的工作环境而言,耗费在晶体管上的功率损失仍无法令人满意。因此,实有必要发展出顺向电压极低的单向导通装置,以降低功率损失,提高电源使用的效率。(3)
技术实现思路
有鉴于此,本专利技术的目的是提供一种单向导通装置,以极低的顺向偏压实现单向导通特性。根据本专利技术的目的,提出一种单向导通装置,此装置的简述如下单向导通装置包括金属氧化物半导体场效应晶体管及驱动装置,金属氧化物半导体场效应晶体管的源极与汲极是分别作为单向导通装置的N极与P极,驱动装置例如是比较器或放大电路等,用以检测金属氧化物半导体场效应晶体管汲极与源极间的电位差。当P极电位高于N极电位时,驱动装置便输出一驱动电位至金属氧化物半导体场效应晶体管的闸极使其导通,金属氧化物半导体场效应晶体管导通后,电流即可由P极经金属氧化物半导体场效应晶体管流向N极。反之,若P极电位低于N极电位,驱动装置便无法输出开启金属氧化物半导体场效应晶体管所需的驱动电位,故P极与N极间处于断路状态,亦即单向导通装置此时为关闭。为让本专利技术的上述目的、特点和优点能更明显易懂,以下特举一较佳实施例并配合附图进行详细说明。(4)附图说明图1是依照本专利技术的实施例一所提供的单向导通装置方块图。图2是运算放大器的接脚定义示意图。图3依照本专利技术的实施例一所提供的单向导通装置电路图。图4是单向导通装置的电压-电流曲线。图5是实施例一所提供的单向导通装置应用于电源供应电路中的情形。图6是依照本专利技术的实施例二所提供的单向导通装置电路图。(5)具体实施方式金属氧化物半导体场效应晶体管(Metal Oxide Semiconductor FieldEffect Transistor,MOSFET)在导通时,汲极(drain)与源极(source)间的顺向电压极低,若能利用金属氧化物半导体场效应晶体管实现单向导通的特性,便可取代二极管成为良好的单向导通装置。众所周知,二极管具有P极及N极,理想上,当P极电位高于N极电位时二极管即可导通(turn on,相当于短路),当P极电位低于N极电位时二极管即关闭(turn off,相当于断路),故谓二极管具有单向导通特性。本专利技术所提供的单向导通装置同样具有P极及N极,并具备如二极管般的单向导通特性,下文中将有详细的探讨。实施例一请参照图1,它是依照本专利技术的实施例一所提供的一种单向导通装置方块图。单向导通装置包括金属氧化物半导体场效应晶体管110及驱动装置150,金属氧化物半导体场效应晶体管110的汲极与源极是分别作为单向导通装置的P极与N极(至于何者为P极或N极当视设计需求而定,下文将进一步说明),驱动装置150则用以检测金属氧化物半导体场效应晶体管110源极与汲极间的电位差。当P极电位高于N极电位时,驱动装置150便输出一驱动电位DS至金属氧化物半导体场效应晶体管110的闸极(gate)使其导通,金属氧化物半导体场效应晶体管导通后,电流即可由P极经金属氧化物半导体场效应晶体管110流向N极。反之,若P极电位低于N极电位,驱动装置150便无法输出开启金属氧化物半导体场效应晶体管110所需的驱动电位DS,故P极与N极间处于断路状态,亦即单向导通装置此时为关闭。符合上述驱动装置150设计需求的电路种类很多,例如比较器或放大电路等,只要能达到本专利技术驱动装置150的功能均可;而运算放大器(operationamplifier,OP)是用以实现比较器与放大电路的常用元件,故此处以运算放大器为例,将其接脚定义加以说明。请参照图2,它是运算放大器的接脚定义示意图。运算放大器200具有非反相输入端1、反相输入端3、高电源端5、低电源端2及输出端4。非反相输入端1与反相输入端3为信号输入端,输出端4为信号输出端。高电源端5及低电源端2需分别接至高电源V+及低电源V-,以取得运算放大器200操作所需的电源。接着请参照图3,它是依照本专利技术的实施例一所提供的一种单向导通装置电路图。单向导通装置包括互相耦接的金属氧化物半导体场效应晶体管310及驱动装置350,金属氧化物半导体场效应晶体管310为P通道(P channel)晶体管(即PMOS),其源极S与汲极D是分别作为单向导通装置的N极与P极。驱动装置350是一由运算放大器200与电阻R1,R2所组成的反相放大器,属放大电路的一种。运算放大器200具有非反相输入端1、反相输入端3、高电源端5、低电源端2及输出端4。非反相输入端1耦接至源极S,输出端4耦接至闸极G,反相输入端3耦接至电阻R1的一端,电阻R1的另一端耦接至汲极D。电阻R2的一端耦接至反相输入端3,电阻R2的另一端耦接至输出端4。高电源端5耦接至源极S、低电源端2接地,以取得运算放大器200操作所需的电源。以下将说明图3的工作原理。单向导通装置的P极与N极的电气特性相当于二极管的P极与N极,并假设N极电压为5V,金属氧化物半导体场效应晶体管310导通时汲极D与源极S间的电阻为0.05欧姆,电阻R1为10K欧姆,电阻R2为5M欧姆。当顺向偏压时,P极比N极电压高,根据反相放大器的放大原理可知(R2/R1)*Vi=-Vo,其中Vi为运算放大器200的输入电压,Vo为输出电压。假设金属氧化物半导体场效应晶体管310完全导通时闸极G的电位为-5伏特(以运算放大器200的非反相输入端1为参考点),由于闸极G的电位即为运算放大器200的输出电压,为使运算放大器200的输出电压满足设计需求,故P极电压需高于N极至少10mV(5M/10K*10mV=-5V),使金属氧化物半导体场效应晶体管310能完全导通。由于金属氧化物半导体场效应晶体管310恰恰完全导通时顺向电流约等于0.2安培(10mV/0.05Ω=0.2A),故可知当顺向电流大于0.2安培即可使金属氧化物半导体场效应晶体管310完全导通。换句话说,P极至N极的顺向电压(VF)=顺向电流*0.05欧姆,若顺向电流为1A,所对应的顺向电压仅为0.05伏特,较萧特基二极管的顺向电压(约0.4V)低了甚多,该单向导通装置的电压-电流曲线如图4所示。因为上述顺向电压可依据电阻R1与R2作调整,可调整至极低甚至趋近理想的单向导通状态。请参照图4,当顺向电流小于0.2安培时金属氧化物半导体场效应晶体管310并不会完全导通,而是随着顺向电流降低晶体管阻抗会增加,直到电流为零时晶体管将完全关闭。因此,当P极与N极间的顺向偏压介于0至10mV时电压-电流并非线性关系,而实际曲线将由晶体管特性决定。当N极比P极电压高时(此时为逆向偏压),非反相输入端1的电位会比反相输入端3高,此时运算放大器20本文档来自技高网...

【技术保护点】
一种单向导通装置,其特征在于,包括:一晶体管,具有一源极、一汲极及一闸极;以及一驱动装置,耦接至该晶体管,用以依据该源极与该汲极间的电位差输出一驱动电位至该闸极以单向导通该晶体管。

【技术特征摘要】
【国外来华专利技术】

【专利技术属性】
技术研发人员:陈昇峰
申请(专利权)人:广达电脑股份有限公司
类型:发明
国别省市:71[中国|台湾]

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1
相关领域技术
  • 暂无相关专利