一种基于神经网络的模式波前复原方法技术

技术编号:32671214 阅读:34 留言:0更新日期:2022-03-17 11:25
本发明专利技术公开了一种基于神经网络的模式波前复原方法,该方法提取了光斑的质心偏移量和二阶矩信息,并利用神经网络拟合光斑质心偏移量和二阶矩与Zernike系数之间的非线性关系,最后通过神经网络从光斑质心偏移量和二阶矩信息中直接预测待测波前对应的Zernike系数。与传统方法相比,本发明专利技术在提取子光斑质心偏移量的同时提取了光斑二阶矩信息,增加了子孔径内的有效信息,并利用神经网络拟合了光斑信息与Zernike系数之间的对应关系,提高了夏克

【技术实现步骤摘要】
一种基于神经网络的模式波前复原方法


[0001]本专利技术属于光学信息测量
,尤其涉及一种基于神经网络的模式波前复原方法。

技术介绍

[0002]夏克

哈特曼波前传感器是一种最常见的光学波前测量装置,主要由微透镜阵列和位于焦平面处的CCD组成,具有结构简单、光能利用率高、测量速度快等优势,被广泛应用于光学检测、激光光束诊断、自适应光学、眼科医学等领域。夏克

哈特曼波前传感器主要工作原理是通过微透镜阵列对入射波前进行分割,并将每个子波前聚焦于CCD上形成光斑阵列图像,然后根据光电探测器所采集的光斑强度信息计算每个子光斑质心偏移量,从而估算其对应的局域子波前斜率,最后通过相应算法复原整个畸变波前。
[0003]根据夏克

哈特曼波前传感器探测原理可知,夏克

哈特曼波前传感器将子波前近似为倾斜平面波,仅从子孔径内获取X、Y两个方向上的倾斜信息,所获取的波前信息有限,若要获得更高精度波前探测,需依赖于高密度子孔径采样波前。然而随着夏克
>‑
哈特曼本文档来自技高网...

【技术保护点】

【技术特征摘要】
1.一种基于神经网络的模式波前复原方法,其特征在于,通过以下步骤实现波前复原:步骤1:随机生成满足Kolmogorov湍流的模式系数A
N
:A
N
=[a
1 a2…
a
N
],式中共N阶Zernike系数,a
i
表示第i阶Zernike系数;步骤2:根据步骤1中的模式系数A
N
与Zernike多项式生成畸变波前wf:式中,Z
i
表示第i阶Zernike多项式;步骤3:将畸变波前输入夏克

哈特曼波前传感器系统并获得光斑阵列图像,夏克

哈特曼波前传感器系统共m个有效子孔径,从光斑阵列图像中提取每个子光斑的质心偏移量和二阶矩信息G
m
:式中,分别为第i个有效子光斑在x、y方向上的质心偏移量,x2、xy及y2部分的二阶矩信息,i=1

m;步骤4:重复步骤1~3,生成训练样本和测试样本,光斑的质心偏移量和二阶矩信息矩阵作为网络的输入,Zernike系数矩阵作为网络的输出,样本的输入与输出一一对应;步骤5:建立神经网络,利用步骤4中的训练样本训练神经网络并保存;步骤6:利用步骤4中的测试样本测试步骤5训练好的神经网络,将质心偏移量和二阶矩信息输入网络预测待测波前对应的Zernike系数,最后根据步骤2重构波前相位。2.根据权利要求1所述的一种基于神经网络的模式波前复原方法,其特征在于:所述步骤2中畸变波前wf经过微透镜阵列分割后形成子波前wf
sub
被视为含有倾斜和二次曲率的波前,其多项式展开为:wf
sub
=f
...

【专利技术属性】
技术研发人员:赵孟孟赵旺王帅杨平杨康建
申请(专利权)人:中国科学院光电技术研究所
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1