一种新冠肺炎病灶区域分割模型训练的方法技术

技术编号:32363910 阅读:47 留言:0更新日期:2022-02-20 03:35
本发明专利技术公开了一种新冠肺炎病灶区域分割模型训练的方法。通过一系列方法对原始数据集调整,分别实现去噪,灰度归一化和数据集的扩充。将调整增强后的数据集图像和对应的分割标签输入新冠肺炎分割训练网络,通过计算网络不同通道的权重函数,提高网络对特征通道的细分,减少图像冗余信息来实现网络分割。经过多次训练,得到训练好的新冠肺炎病灶区域分割模型。本发明专利技术提供的方法可以提高新冠肺炎病灶区域的分割效果。域的分割效果。域的分割效果。

【技术实现步骤摘要】
一种新冠肺炎病灶区域分割模型训练的方法


[0001]本专利技术涉及医学图像分割
,尤其涉及一种新冠肺炎病灶区域分割模型训练的方法。

技术介绍

[0002]医学图像分割主要是对各种器官,病灶区域,轮廓的分割,来进一步提高对CT,X射线等图像的分析。目前新冠肺炎影响全球的公众安全,成为了人们的首要难题。因此,专利技术训练一个快速准确识别检测的新冠肺炎病灶区域分割模型尤其重要,也能为后期的医务人员提供辅助判断。随着人工智能的发展,传统的阈值方法被以神经网络为代表的新型方法代替,并衍生了许多改进方法,主要通过修改网络结构,替换卷积模块的方式提高分割效果,数据集预处理的改进也能提高分割效果,而目前在数据集的处理上做的工作很少,因此本专利技术提出的新冠肺炎病灶区域分割模型的训练方法不仅对数据集针对了修改,还在结构中加入了注意力机制模块,通过共同作用来提高分割的效果。
[0003]目前医学图像存在边缘模糊、对比度低、病灶区域占比小的问题,同时病灶区域人工标注耗时耗力、专业要求高。数据样本少,样本单一存在随机偏差,在语义分割环节,数据集中作为输入本文档来自技高网...

【技术保护点】

【技术特征摘要】
1.一种新冠肺炎病灶区域分割模型训练的方法,其特征在于,该方法包含下列步骤:准备新冠肺炎患者的数据集,包括标注病灶区域的原始数据集和对应的病灶区域分割标签,将原始数据集标为1类,由于原始数据集病灶区域与非病灶区域边界模糊,噪声大,因此对原始数据集进行两步去噪处理,通过初去噪提高病灶区域的分辨率,深去噪丰富病灶区域边缘和纹理,将去噪后的数据集标为2类,对2类数据集中病灶区域进行灰度值归一化,这样有利于保留病灶区域的有效特征,减少冗余信息,将归一化后的数据集标为3类;之后对1,2,3类数据集进行数据扩充,提高数据量,为后续网络训练提高充足的样本的同时丰富样本类型提高训练模型鲁棒性,具体使用生成对抗网络实现数据扩充,该网络包含一个生成器网络,一个判别器网络,该网络可以生成新的数据并在边缘纹理上有更好的表现效果,将生成的数据标为4类,之后完整的数据集包含1,2,3,4类不同类型的数据集,将数据以及对应的分割标签输入到训练分割模型,分割模型通过卷积操作来特征提取,反卷积操作完成图像还原,通过跳跃连接通道堆叠特征图像实现病灶区域的精确分割,提出在特征提取之后加入注意力机制模块,该模块通过计算特征图像通道之间的依赖性,获取逐个通道的权值来进一步提高对重点区域的关注,通过迭代更新训练模型的损失函数,完成整个模型的训练,损失函数最低时,模型训练效果最好,模型训练完成,此时使用该损失权值替换网络初始权重,将数据输入可以得到对应的新冠病灶区域分割数据。2.如权利要求1所述的新冠肺炎病灶区域分割模型训练的方法,其特征在于,上述的两步去噪方法由于新冠肺炎数据集分辨率低,存在部分噪声,因此使用高斯滤波对整个数据进行初去噪,之后使用三维块匹配方法进一步去噪,该方法通过使用三维块对病灶区域和其他区域进行扫描,首先在数据图像中设定病灶中心区域为参考块,大小为8
×
8,步长设定为3个像素,通过计算参考块之间的距离,之后堆叠成一个三维数组,使用三维压缩变换系数实现三维到二维的转化,重复操作以后,整个图像区域特征最后由加权平均值表现,至此,数据集的噪声得到进一步去除。3.如权利要求1所述的...

【专利技术属性】
技术研发人员:朱琎王超郭诚刚孙凯李大一马国军胡涛宋祖洋
申请(专利权)人:江苏科技大学
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1