一种多深度学习模型的最优选取方法及系统技术方案

技术编号:31308902 阅读:29 留言:0更新日期:2021-12-12 21:34
本发明专利技术提供一种多深度学习模型的最优选取方法及系统,方法包括:对于同一类型的深度学习模型,基于相同的训练数据集进行训练,得到多个不同版本的深度学习模型;确定深度学习模型的多个评价指标,计算每一个版本的深度学习模型的每一个评价指标值;对于同一个执行任务的多个版本的深度学习模型,基于每一个版本的深度学习模型的多个评价指标值,选取最优版本的深度学习模型。本发明专利技术通过对多个不同版本的深度学习模型的对比评估,从而选取最优的深度学习模型,提高应用选定的最优深度学习算法模型进行目标预测的适用准确性及有效性。模型进行目标预测的适用准确性及有效性。模型进行目标预测的适用准确性及有效性。

【技术实现步骤摘要】
一种多深度学习模型的最优选取方法及系统


[0001]本专利技术涉及人工智能领域,更具体地,涉及一种多深度学习模型的最优选取方法及系统。

技术介绍

[0002]在计算机科学中,特别是在使用有监督学习的机器学习和深度学习算法过程中,通过对模型的测量和评估才能选择最优的模型参数或者算法参数。只有选择与问题相匹配的评估方法,我们才能够快速的发现在模型选择和训练过程中可能出现的问题,迭代地对模型进行优化。
[0003]目前深度学习算法的理论知识的研究是慢于实验研究的,那么在设计和配置深度学习模型时,面临很多选择(如网络的层数、大小和类型、卷积层激活方式以及损失函数的选择),必须做出决策来选择合适的设计与配置。因此有效的深度学习模型评估方式和模型对比分析方式就显得尤为重要。

技术实现思路

[0004]本专利技术针对现有技术中存在的技术问题,提供一种多深度学习模型的最优选取方法及系统。
[0005]根据本专利技术的第一方面,提供了一种多深度学习模型的最优选取方法,包括:对于同一类型的深度学习模型,基于相同的训练数据集进行训练,本文档来自技高网...

【技术保护点】

【技术特征摘要】
1.一种多深度学习模型的最优选取方法,其特征在于,包括:对于同一类型的深度学习模型,基于相同的训练数据集进行训练,得到多个不同版本的深度学习模型;确定深度学习模型的多个评价指标,计算每一个版本的深度学习模型的每一个评价指标值;对于同一个执行任务的多个版本的深度学习模型,基于每一个版本的深度学习模型的多个评价指标值,选取最优版本的深度学习模型。2.根据权利要求1所述的多深度学习模型的最优选取方法,其特征在于,所述同一类型的深度学习模型是指训练数据集的处理方式、深度学习模型的网络结构的设置以及深度学习模型的训练方法相同的深度学习模型;所述同一类型的深度学习模型包括与不同的执行任务相对应的多种深度学习模型。3.根据权利要求2所述的多深度学习模型的最优选取方法,其特征在于,所述多种深度学习模型包括图像分类识别模型、目标检测模型和语义分割模型。4.根据权利要求2所述的多深度学习模型的最优选取方法,其特征在于,所述训练数据集的处理方式包括是否需要对训练数据集中的数据进行增强操作和向深度学习模型中输入图像的分辨率;所述深度学习模型的网络结构的设置包括卷积网络层数的设置、非线性化所使用的激活方式、损失函数的选择、学习率递减的速率、反向传播时优化器的选择和IOU阈值的设置;所述深度学习模型的训练方法包括batchsize的大小、迭代的次数和同一模型分布在不同显卡上面进行分布式训练方式。5.根据权利要求3所述的多深度学习模型的最优选取方法,其特征在于,所述深度学习模型的多个评价指标包括深度学习模型的基本信息和深度学习模型的算法评测指标;所述深度学习模型的基本信息是指深度学习模型在硬件上运行时产生的参数,包括深度学习模型输入数据的格式和类型、输出数据的格式和类型、模型参数量、模型运行内存占用量和推理时间(FPS);对于不...

【专利技术属性】
技术研发人员:何云何豪杰罗跃军
申请(专利权)人:武汉中海庭数据技术有限公司
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1