一种电磁炉炉面温度控制电路制造技术

技术编号:30813812 阅读:17 留言:0更新日期:2021-11-16 08:32
一种电磁炉炉面温度控制电路,过零检测电路中三极管Q1的第一引脚与主控芯片电路的过零信号接收引脚连接,三极管Q1的第二引脚与电阻R2的一端连接,三极管Q1的第三引脚与电阻R2的另外一端连接,电阻R1的一端连接至三极管Q1的第三引脚与电阻R2之间,过零检测电路通过电阻R1的另外一端连接至EMC防护电路和整流滤波电路之间;通过获取用户对电磁炉炉面的预设温度,判断并比较预设温度与电磁炉炉面的目前温度,对电磁炉锅内温度采用各种功率组合进行加热控制,以达到更精准更稳定的温度。本实用新型专利技术使在电磁炉功率较低时,仍能不停顿进行加热,进而利用不同高低功率进行锅内食物的温度更精准更恒定的控制。更精准更恒定的控制。更精准更恒定的控制。

【技术实现步骤摘要】
一种电磁炉炉面温度控制电路


[0001]本技术涉及电磁炉
,具体涉及一种电磁炉炉面温度控制电路。

技术介绍

[0002]电磁炉是根据电磁感应现象,利用交变电流通过线圈产生方向不断改变的交变磁场,处于交变磁场中的导体的内部将会出现涡旋电流(原因可参考法拉第电磁感应定律),这是涡旋电场推动导体中载流子(锅里的是电子而绝非铁原子)运动所致;涡旋电流的焦耳热效应使导体升温,从而实现加热。
[0003]目前,部分电磁炉电控方案采用单管(单IGBT)并联谐振方案,由于在低功率(通常是低于1000W)时,IGBT开关处于硬开关状态,损耗较大,IGBT温升较高,因此这些方案在低功率时一般采用非连续加热方式,采用1000W断续加热得到更低功率值,如500W、300W等。这种非连续加热方式也称间歇性加热,这种1000W间歇性加热方式在需要锅内食物或水温度控制时,锅内食物温度变化较大,通常在10度以上,甚至更大,误差较大,达不到温度更精准的要求。亟需一种新的电磁炉炉面温度控制技术方案。

技术实现思路

[0004]为此,本技术提供一种电磁炉炉面温度控制电路,从而使在电磁炉功率较低时,仍能不停顿进行加热,进而利用不同高低功率进行锅内食物的温度更精准更恒定的控制。
[0005]为了实现上述目的,本技术提供如下技术方案:一种电磁炉炉面温度控制电路,包括EMC防护电路、整流滤波电路、过零检测电路、谐振电路、IGBT驱动电路和主控芯片电路;所述EMC防护电路与所述整流滤波电路连接,所述过零检测电路包括三极管Q1、电阻R1和电阻R2,所述三极管Q1的第一引脚与所述主控芯片电路的过零信号接收引脚连接,三极管Q1的第二引脚与电阻R2的一端连接,三极管Q1的第三引脚与电阻R2的另外一端连接,所述电阻R1的一端连接至三极管Q1的第三引脚与电阻R2之间,过零检测电路通过电阻R1的另外一端连接至所述EMC防护电路和整流滤波电路之间;所述谐振电路一端与所述整流滤波电路连接,谐振电路另外一端经所述IGBT驱动电路与所述主控芯片电路连接。
[0006]作为电磁炉炉面温度控制电路的优选方案,所述EMC防护电路包括电容C1,电容C1连接在零线和火线之间;所述整流滤波电路包括整流器、电感L1和电容C2,所述整流器的输入引脚连接所述电容C1,所述整流器的正极输出引脚连接所述电感L1的一端,整流器的负极输出引脚连接所述电容C2的一端;所述电感L1的另外一端与所述电容C2的另外一端连接。
[0007]作为电磁炉炉面温度控制电路的优选方案,所述谐振电路包括电感L2、电容C3和功率管IGBT,所述电感L2和电容C3并联后一端连接至电感L1和电容C2之间,电感L2和电容C3并联后的另外一端连接至功率管IGBT的第一引脚,整流器的负极输出引脚和电容C2的一端共同连接至功率管IGBT的第二引脚。
[0008]作为电磁炉炉面温度控制电路的优选方案,所述IGBT驱动电路包括IGBT驱动芯片,所述功率管IGBT的第三引脚连接IGBT驱动芯片。
[0009]作为电磁炉炉面温度控制电路的优选方案,所述整流器的负极输出引脚和所述电容C2之间接地,三极管Q1的第二引脚与电阻R2之间接地。
[0010]本技术的电磁炉炉面温度控制电路具有如下优点:本技术的电磁炉炉面温度控制电路中,EMC防护电路与整流滤波电路连接,过零检测电路包括三极管Q1、电阻R1和电阻R2,三极管Q1的第一引脚与主控芯片电路的过零信号接收引脚连接,三极管Q1的第二引脚与电阻R2的一端连接,三极管Q1的第三引脚与电阻R2的另外一端连接,电阻R1的一端连接至三极管Q1的第三引脚与电阻R2之间,过零检测电路通过电阻R1的另外一端连接至EMC防护电路和整流滤波电路之间;谐振电路一端与整流滤波电路连接,谐振电路另外一端经IGBT驱动电路与主控芯片电路连接。本技术的电磁炉炉面温度控制电路加入市电过零检测,实现IGBT过零启动,IGBT损耗减少,IGBT温度降低;实现低功率不间歇加热功能,可以120W或300W或500W等低功率稳定连续加热。
[0011]本技术还提供一种电磁炉炉面温度控制方法,采用上述的电磁炉炉面温度控制电路,包括以下步骤:
[0012]获取用户对电磁炉炉面的预设温度,判断并比较所述预设温度与电磁炉炉面的目前温度,当所述目前温度与所述预设温度的差值不小于第一阈值时,控制所述电磁炉炉面采用大功率档位进行加热;当所述目前温度与所述预设温度的差值小于第一阈值并大于第二阈值时,控制所述电磁炉炉面采用中功率档位进行加热;
[0013]判断并比较所述预设温度与电磁炉炉面的目前温度,当所述目前温度与所述预设温度的差值不大于第二阈值时,控制所述电磁炉炉面采用连续低功率间歇性加热;当所述目前温度与所述预设温度的差值大于第二阈值并小于第一阈值时,控制所述电磁炉炉面维持中功率档位进行加热;
[0014]判断并比较所述预设温度与电磁炉炉面的目前温度,当所述目前温度超过所述预设温度时,控制所述电磁炉炉面停止进行连续低功率间歇性加热;当所述目前温度降低并不超过所述预设温度时,控制所述电磁炉炉面采用预设低功率档位进行加热;
[0015]当所述目前温度升高并超过所述预设温度时,再次控制所述电磁炉炉面停止进行预设低功率档位加热。
[0016]作为电磁炉炉面温度控制方法的优选方案,所述大功率档位状态下,电磁炉输出功率不小于1600W;所述中功率档位状态下,电磁炉输出功率处于1000W和1600W之间,所述低功率档位状态下,电磁炉输出功率小于1000W。
[0017]作为电磁炉炉面温度控制方法的优选方案,对所述电磁炉的低功率状态划分为若干低功率档位,根据所述目前温度超过所述预设温度的大小选择不同大小的低功率档位。
[0018]作为电磁炉炉面温度控制方法的优选方案,所述连续低功率间歇性加热为按照由大致小的方式切换低功率档位。
[0019]作为电磁炉炉面温度控制方法的优选方案,低功率状态下采用不同周期的开通占空比得到不同低功率连续加热。
[0020]本技术的电磁炉炉面温度控制方法具有如下优点:通过获取用户对电磁炉炉面的预设温度,判断并比较预设温度与电磁炉炉面的目前温度,对电磁炉锅内温度采用各
种功率组合进行加热控制,以达到更精准更稳定的温度,包括大功率、连续中功率、不同档位的连续低功率间歇性加热;进而可以对不同的温度要求或不同的烹饪功能分成若干个阶段,不同的阶段采用不同的功率输出;使锅具温度控制更精准,更恒定,在特定温度与气压下,采用相应的锅具与食物,经实验室测定,可以达到
±
5℃;大大提升人们对食物温度精准控制的需求;运用此方法可以烹饪更多的食物,如温奶、炖熬、煎牛排、爆米花等,满足人们的各种食物烹饪需求。
附图说明
[0021]为了更清楚地说明本技术的实施方式或现有技术中的技术方案,下面将对实施方式或现有技术描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的本文档来自技高网
...

【技术保护点】

【技术特征摘要】
1.一种电磁炉炉面温度控制电路,其特征在于,包括EMC防护电路、整流滤波电路、过零检测电路、谐振电路、IGBT驱动电路和主控芯片电路;所述EMC防护电路与所述整流滤波电路连接,所述过零检测电路包括三极管Q1、电阻R1和电阻R2,所述三极管Q1的第一引脚与所述主控芯片电路的过零信号接收引脚连接,三极管Q1的第二引脚与电阻R2的一端连接,三极管Q1的第三引脚与电阻R2的另外一端连接,所述电阻R1的一端连接至三极管Q1的第三引脚与电阻R2之间,过零检测电路通过电阻R1的另外一端连接至所述EMC防护电路和整流滤波电路之间;所述谐振电路一端与所述整流滤波电路连接,谐振电路另外一端经所述IGBT驱动电路与所述主控芯片电路连接。2.根据权利要求1所述的一种电磁炉炉面温度控制电路,其特征在于,所述EMC防护电路包括电容C1,电容C1连接在零线和火线之间;所述整流滤波电路包括整流器、电感L1和电容C2,所述整流器的...

【专利技术属性】
技术研发人员:王波
申请(专利权)人:广东顺德锐椒电器有限公司
类型:新型
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1