一种JH-2本构完整强度方程参数的优化方法技术

技术编号:30156904 阅读:28 留言:0更新日期:2021-09-25 15:08
本发明专利技术涉及一种JH

【技术实现步骤摘要】
一种JH

2本构完整强度方程参数的优化方法


[0001]本专利技术涉及一种JH

2本构完整强度方程参数的优化方法,属于脆性材料力学性能表征


技术介绍

[0002]随着计算科学的高速发展,数值模拟技术在材料研究及结构设计领域的应用也愈加广泛,为了准确描述材料在特定条件下的力学响应和失效行为,需要在模拟软件中定义材料的本构模型,本构模型参数的准确性是决定模拟仿真计算精度的主要因素。对于陶瓷、玻璃、非晶等脆性材料,JH

2本构可以较为准确的描述材料在不同条件下的物理响应,然而JH

2本构参数较多,部分参数无法直接获取,而通过间接法测试或拟合的参数精度较低,通常需要进行大量的数值模拟调试,限制了JH

2本构的应用与发展。
[0003]JH

2本构完整强度方程主要涉及A、N、T、C四个待测参数,其中A为完整强度参数,N为完整强度指数,无实际物理意义;T为最大拉伸静水压,是完整强度曲线与横坐标轴的交点,无法直接测试获得;本文档来自技高网...

【技术保护点】

【技术特征摘要】
1.一种JH

2本构完整强度方程参数的优化方法,其特征在于:所述方法步骤包括:测试获得的雨贡纽条件下的等效应力、准静态压缩强度、准静态抗拉强度和动态压缩强度;获取最大拉伸静水压的取值范围[T
min
,T
max
]:基于JH

2本构完整强度方程所对应的完整强度曲线中的准静态抗拉强度,获得最大拉伸静水压的下限值;对所述完整强度曲线做归一化处理,基于归一化后完整强度曲线上的所对应的雨贡纽条件下的等效应力、准静态压缩强度和准静态抗拉强度,计算最大拉伸静水压的上限值;获取应变率敏感系数的取值范围[C
min
,C
max
]:在最大拉伸静水压的取值范围内,在由归一化等效强度和归一化静水压构建的σ
*

P
*
坐标系下,求解相同静水压下的准静态压缩强度和动态压缩强度,并计算获得应变率敏感系数的下限值;通过雨贡纽条件下的等效应力和准静态压缩强度,计算获得完整强度指数为零时的应变率敏感系数作为应变率敏感系数的上限值;在最大拉伸静水压和应变率敏感系数的取值范围内间隔取值,结合准静态压缩强度、雨贡纽条件下的等效应力和雨贡纽条件下的静水压计算获得完整强度参数和完整强度指数;从多组最大拉伸静水压、应变率敏感系数、完整强度参数和完整强度指数中,获得最优的最大拉伸静水压、应变率敏感系数、完整强度参数和完整强度指数。2.如权利要求1所述的一种JH

2本构完整强度方程参数的优化方法,其特征在于:所述最大拉伸静水压的取值范围[T
min
,T
max
]的获取过程为:取所述完整强度曲线中准静态抗拉强度在曲线中对应的横坐标值作为最大拉伸静水压的下限值;对JH

2本构完整强度方程做归一化处理,消除应变率影响,得到归一化后的完整强度曲线,取曲线中所对应的雨贡纽条件下的等效应力、准静态压缩强度和准静态抗拉强度中任意两点的连线与横坐标的交点作为归一化后最大拉伸静水压的上限值。3.如权利要求1或2所述的一种JH

2本构完整强度方程参数的优化方法,其特征在于:所述最大拉伸静水压下限值T
min
的计算公式为:所述最大拉伸静水压上限值T
max
的计算公式为:其中,C为应变率敏感系数,σ
T
为准静态抗拉强度,σ
HEL
为雨贡纽条件下的等效应力,σ
C
为准静态压缩强度,σ1、σ2为σ
HEL
、σ
C
和σ
T
中的任意两项,中的任意两项,分别为σ1、σ2所对应的应变率。4.如权利要求1或2所述的一种JH

2本构完整强度方程参数的优化方法,其特征在于:所述最大拉伸静水压上限值T
max
的计算公式为:其中,σ
T
为准静态抗拉强度,σ
C
为准静态压缩强度。5.如权利要求1所述的一种JH

...

【专利技术属性】
技术研发人员:王扬卫安瑞谈燕付强程焕武程兴旺
申请(专利权)人:北京理工大学
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1