一种高性能粉末冶金钛金属及其制备方法技术

技术编号:29235999 阅读:45 留言:0更新日期:2021-07-13 16:57
本发明专利技术公开了一种高性能粉末冶金钛金属及其制备方法;其制备步骤为:先对不同粒径配比的TiH

【技术实现步骤摘要】
一种高性能粉末冶金钛金属及其制备方法
本专利技术涉及钛金属材料的粉末冶金技术与热加工
,尤其涉及一种高性能粉末冶金钛金属及其制备方法。
技术介绍
钛金属材料具有耐腐蚀、比强度高、生物相容性良好等优异的物理化学性能,然而,高昂的制造成本限制了其在汽车零件、体育器械与电子通讯设备等民用市场中的运用。而粉末冶金作为一种制备复杂结构零件的净近成形技术,具有材料利用率高、工艺流程短等特点,是降低钛金属材料生产成本的有效途径。TiH2作为工业上使用氢化脱氢法制备纯钛粉的中间产物,在进一步降低原料成本的同时,还具备更加优异的烧结活性,可制得致密度更高、性能更优的钛金属材料。然而,使用TiH2粉末为原料制备出的粉末冶金钛金属成形制品中仍不可避免地存在诸多如孔洞、晶粒粗大、显微裂纹等对力学性能产生不利影响的组织缺陷。与铸锻态相比,以TiH2粉末为原料制备出的钛材其性能仍有待提高以满足工程需求。通过引入热挤压等塑性变形技术,可大幅降低钛金属材料的孔隙率,起到消除组织缺陷、细化晶粒、提高力学性能的作用。目前,已有使用热挤压技术来改善粉末冶金钛金属产品的加工方法。然而,传统热挤压工艺的成本较高,且纯钛经传统热挤压后其塑性虽有大幅提高,但强度仍偏低,无法实现高强度与高塑性的良好匹配,从而满足工程运用上的需求。
技术实现思路
本专利技术目的在于完善已有的纯钛热挤压工艺路线,提供一种高性能粉末冶金钛金属及其制备方法。本专利技术目制备工艺能大幅提高热挤压后纯钛的强度和塑性,实现其高强度与高塑性的良好匹配,从而满足工程需求。本专利技术采用廉TiH2粉末为原料,结合粉末冶金工艺,大幅降低纯钛金属材料的原料与加工成本;同时,结合热挤压工艺消除和改善粉末冶金纯钛金属材料中的孔隙、晶粒粗大、显微裂纹等组织缺陷;本专利技术工艺可细化晶粒并形成高密度位错及大量亚结构,大幅提高纯钛的力学性能和致密度。本专利技术所制备的纯钛金属材料,具有高达99.8%以上的致密度,组织均匀细化,其室温屈服强度为471~592MPa,抗拉强度为666~779MPa,断后伸长率为29~39%,远高于锻件水平。本专利技术通过下述技术方案实现:一种高性能粉末冶金钛金属的制备方法,其特征在于将TiH2粉末的温压成形、脱氢预烧结处理、热挤压相结合,具体包括如下制备步骤:步骤一:将TiH2粉末进行温压成形,得到TiH2生坯;步骤二:对步骤一制得的TiH2生坯,在真空炉进行脱氢预烧结处理,随后真空炉冷至室温,得到纯Ti试样;步骤三:对步骤二制得的纯Ti试样进行热挤压,随后空冷至室温。上述步骤一中,TiH2粉末,由150~220μm、29~40μm及小于10μm的三种粒径组成,且三者的质量比介于15:2:3~15:4:1之间。上述步骤一中,TiH2粉末的温压成形,压力为500~700MPa,温压温度为100~200℃,保压时间为30~180s,并采用硬脂酸锌的有机溶液作为模壁润滑剂。本专利技术温压成形采用单向温压成形,即一个方向作用力的温压成形,区别于上下两个方向同时使力的成形方式。上述步骤二中,TiH2生坯的脱氢温度为500~750℃,保温时间为1~2h。上述步骤三中,纯Ti试样的热挤压温度为950~1100℃,保温时间为0.5~1h。上述步骤二中,真空炉的升温速率为5~15℃/min,真空度为5×10-3Pa。上述步骤三中,热挤压过程中,热挤压嘴的温度为400~500℃,热挤压模具的温度为400~500℃。上述步骤三中,热挤压过程中,热挤压嘴内轮廓锥面中的母线与竖直方向呈26~30°,且锥面与柱面的连接处有圆弧过渡,倒角度数为2~4°。采用本专利技术上述制备方法,即可获得高性能粉末冶金钛金属。本专利技术相对于现有技术,具有如下的优点及效果:大幅降低纯钛金属材料的原料与加工成本:一方面,TiH2作为制备纯钛粉的中间产物,价格低廉且烧结活性优异,相比于以氢化脱氢钛粉为原料的传统烧结工艺,其在成本上具备明显优势;另一方面,试样在热挤压前的脱氢处理温度仅为715℃,远低于传统工艺中试样烧结致密化时的温度(1200℃以上),可大幅降低纯钛的制备成本。力学性能优异,远超于铸锻件水平,可满足实际工程运用的需求:与1250℃烧结4h的纯钛试样相比,经本专利技术制备方法处理后的纯钛其室温屈服强度提高了126MPa,抗拉强度提高了199MPa,而断后伸长率提高了7%。本专利技术显著提高了纯钛金属材料的强度和塑性,获得优异的综合力学性能,对拓宽纯钛的应用范围具有重大意义。附图说明图1为实施例1中TiH2生坯经脱氢预烧结处理后的金相组织形貌图。图2为实施例1中纯钛试样经热挤压后的金相组织形貌图。图3为实施例3中纯钛试样经热挤压后的室温拉伸应力应变曲线。图4为实施例3中纯钛试样经热挤压后的拉伸断口。具体实施方式下面结合具体实施例,对本专利技术高性能粉末冶金钛金属制备工艺,作进一步具体描述。本专利技术温压成形工艺中,所用设备型号:THP-60A油压机。实施例1(1)选取质量分数比为15:3:2且粒径尺寸分别为150~220μm、29~40μm及小于10μm的三种TiH2粉末进行混合,随后进行温压成形实验,成形压力为500MPa,温压温度为200℃,保压时间为180s;目的是为了获得一定形状和尺寸同时具有一定强度和密度的毛坯,为后续的脱氢处理作准备。(2)对TiH2生坯作脱氢预烧结处理,TiH2生坯的脱氢温度为550℃,保温时间为2h,真空炉的升温速率为5℃/min,真空度为5×10-3Pa;目的是为了去除TiH2生坯中的H元素,以消除H对纯钛金属材料力学性能的危害;同时进一步提高毛坯的强度和密度,为后续热挤压作准备。(3)对脱氢预烧结处理后的纯Ti试样进行热挤压,纯钛试样的热挤压温度为1100℃,保温时间为1h,挤压比为9:1;优选地,热挤压嘴的温度为500℃,热挤压模具的温度为500℃;目的是为了消除孔洞缺陷,细化晶粒并引入高密度位错及大量亚结构,从而强化基体,获得优异的综合力学性能。(4)本实施例步骤(2)中TiH2生坯经脱氢预烧结处理后的金相组织形貌如图1所示。试样经打磨抛光及腐蚀液腐蚀后采用金相显微镜观察其组织形貌,由图可知,经脱氢处理后,粉末颗粒聚集现象明显,颗粒边界清晰,基体中的孔洞尺寸较大,且多为不规则形状。采用阿基米德排水法测得此时纯钛的致密度为70%。(5)本实施例步骤(3)中纯钛试样经热挤压后的金相组织形貌如图2所示。试样经打磨抛光及腐蚀液腐蚀后采用金相显微镜观察其组织形貌,由图可知,经热挤压后,粉末颗粒聚集现象及颗粒边界消失,基体中的孔隙得以消除,且晶粒尺寸细化至2-3μm,并表现出平行于热挤压方向的取向关系。采用阿基米德排水法测得此时纯钛的致密度为99.9%。(6)实验结果表明,纯钛试样的致密度及力本文档来自技高网...

【技术保护点】
1.一种高性能粉末冶金钛金属的制备方法,其特征在于将TiH

【技术特征摘要】
1.一种高性能粉末冶金钛金属的制备方法,其特征在于将TiH2粉末的温压成形、脱氢预烧结处理、热挤压相结合,具体包括如下制备步骤:
步骤一:将TiH2粉末进行温压成形,得到TiH2生坯;
步骤二:对步骤一制得的TiH2生坯,在真空炉进行脱氢预烧结处理,随后真空炉冷至室温,得到纯Ti试样;
步骤三:对步骤二制得的纯Ti试样进行热挤压,随后空冷至室温。


2.根据权利要求1所述高性能粉末冶金钛金属的制备方法,其特征在于:步骤一中,TiH2粉末,由150~220μm、29~40μm及小于10μm的三种粒径组成,且三者的质量比介于15:2:3~15:4:1之间。


3.根据权利要求2所述高性能粉末冶金钛金属的制备方法,其特征在于:步骤一中,TiH2粉末的温压成形,压力为500~700MPa,温压温度为100~200℃,保压时间为30~180s,并采用硬脂酸锌的有机溶液作为模壁润滑剂。


4.根据权利要求3所述高性能粉末冶金钛金属的制备方法,其特征在于:步骤二中,TiH2生坯的脱氢温度为500~750℃,保温...

【专利技术属性】
技术研发人员:肖志瑜何文艺吕献丰温利平彭思远杨晓辉
申请(专利权)人:华南理工大学
类型:发明
国别省市:广东;44

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1