一种高电子迁移率晶体管结构制造技术

技术编号:29040661 阅读:22 留言:0更新日期:2021-06-26 05:50
本实用新型专利技术公开了一种高电子迁移率晶体管结构,它包括依次形成于衬底上方的成核层、缓冲层、沟道层、AlN插入层、AlGaN势垒层,AlGaN势垒层上表面形成有间隔设置的源、漏、栅电极结构,源、漏、栅电极结构之间具有钝化层,栅电极结构由第一栅电极层,设于第一栅电极层上且宽度大于第一栅电极层的第二栅电极层,设于第二栅电极层上且宽度大于第二栅电极层的第三栅电极层组成。它具有如下优点:提高器件增益。

【技术实现步骤摘要】
一种高电子迁移率晶体管结构
本技术涉及半导体领域,具体涉及一种高电子迁移率晶体管。
技术介绍
随着科技的进步提升,现有的第一、二代半导体器件已经无法满足更高频率、更高功率、更低功耗的通信领域技术发展的需求,新型宽禁带化合物半导体材料GaN,得助于其宽禁带宽度、高击穿电场,以及较高的热导率,且耐腐蚀、抗辐射等一系列硅基半导体材料所不具备的优良特性,可以极大程度地满足现今通信技术的发展需求,大大提高了器件性能,使得以GaN为代表的第三代半导体材料在微波毫米波器件制造中有了广泛的应用。进入二十世纪90年代后,由于P型掺杂技术的突破以及成核层技术的引入,使得GaN材料得到快速的发展。GaN材料可以形成AlGaN/GaN、InAlN/GaN等类型的异质结构,这类异质结构在室温下能获得很高的电子迁移率,以及极高的峰值电子速度和饱和电子速度,同时自发极化效应使其获得的二维电子气浓度也比第二代化合物半导体异质结更高。这些特点奠定了氮化物半导体高电子迁移率晶体管在微波毫米波频段的大功率、高效率、宽带宽、低噪声等领域迅速超越GaAs基HEMT(高电子迁移率晶体管)和InP基HEMT(高电子迁移率晶体管)的必然趋势。然而,为了适应不断增加的工作频率,目前的主流做法是不断减小器件的柵长以及源漏间距,这就导致其工作电压很低,基本输出不了大功率,同时为了追求高频率,器件一般都未引入钝化从而降低寄生电容,势垒层表面没有钝化很容易发生电流崩塌效应,从而严重影响器件功率的输出及效率的提升。
技术实现思路
本技术提供了一种高电子迁移率晶体管,其克服了
技术介绍
中所述的现有技术的不足。本技术解决其技术问题所采用的技术方案是:一种高电子迁移率晶体管结构,包括依次形成于衬底上方的成核层、缓冲层、沟道层、AlGaN势垒层,AlGaN势垒层上表面形成有间隔设置的源、漏、栅电极结构,源、漏、栅电极结构之间具有钝化层,栅电极结构由第一栅电极层,设于第一栅电极层上且宽度大于第一栅电极层的第二栅电极层,设于第二栅电极层上且宽度大于第二栅电极层的第三栅电极层组成。一实施例之中:所述第二栅电极层厚度小于或等于所述第一栅电极层,所述第三栅电极层厚度小于或等于所述第二栅电极层。一实施例之中:所述第一栅电极层厚度大于一实施例之中:所述第一栅电极层宽度为一实施例之中:所述第二栅电极层宽度为一实施例之中:所述第三栅电极层宽度为一实施例之中:所述钝化层厚度大于或等于所述第一栅电极层厚度。一实施例之中:所述钝化层为氮化硅、氮化铝、氧化铝中的一种。一实施例之中:所述沟道层与所述AlGaN势垒层之间还具有AlN插入层,AlN插入层的厚度为一实施例之中:所述AlGaN势垒层的厚度为本技术方案与
技术介绍
相比,它具有如下优点:1、采用三层宽度逐渐增加的栅电极结构,较小的第一栅电极层、较大的第二栅电极层、更大的第三栅电极层依次层叠,减小了栅电阻、栅极寄生电容,提高器件栅控能力、跨导和迁移率,从而提高器件增益。2、增加了钝化层厚度,抑制高频下电流崩塌,同时降低栅下寄生电容。3、增加了AlN插入层结构,增强材料压电极化,增加二维电子气面密度,提高电流密度。附图说明下面结合附图和实施例对本技术作进一步说明。图1绘示了一种高电子迁移率晶体管结构的示意图。图标:1-衬底;2-外延层;21-AlGaN势垒层;22-AlN插入层;23-沟道层;24-缓冲层;25-成核层;31-栅电极结构;311-第一栅电极层;312-第二栅电极层;313-第三栅电极层;32-源电极结构;33-漏电极结构;4-钝化层;具体实施方式请查阅图1,一种高电子迁移率晶体管结构,包括依次形成于衬底上方的成核层25、缓冲层24、沟道层23、AlN插入层22、AlGaN势垒层21,AlGaN势垒层21上表面形成有间隔设置的源、漏、栅电极结构32、33、31,源、漏、栅电极结构32、33、31之间具有钝化层4,栅电极结构31由第一栅电极层311,设于第一栅电极层311上且宽度大于第一栅电极层311的第二栅电极层312,设于第二栅电极层312上且宽度大于第二栅电极层312的第三栅电极层313组成。该第一栅电极层311厚度大于该第一栅电极层311宽度为该第二栅电极层312宽度为该第三栅电极层312宽度为该第二栅电极层312厚度小于或等于该第一栅电极层311,该第三栅电极层313厚度小于或等于该第二栅电极层312。该钝化层4厚度大于或等于该第一栅电极层厚度311。足够厚的钝化层4能够降低栅电极金属的寄生电容,提高增益。该钝化层为氮化硅、氮化铝、氧化铝中的一种。该AlN插入层22的厚度为增强了材料压电极化,增加了电流密度。该AlGaN势垒层21的厚度为Al组分大于25%,可提高电流密度。该衬底1为SiC衬底或蓝宝石衬底或Si衬底。本实施例该的高电子迁移率晶体管结构的制作步骤如下:1)在衬底1上自下而上依次生长成核层25、缓冲层24、沟道层23、AlN插入层22、AlGaN势垒层21;成核层25为AlN成核层、缓冲层24为GaN缓冲层、沟道层23为GaN沟道层、2)在包括成核层25、缓冲层24、沟道层23、AlN插入层22、AlGaN势垒层21的外延层2上沉积钝化层4,钝化层4要求低功率,应力约±100Mpa,折射率2±0.1,厚度>1300A;3)在钝化层4上光刻有源区的电隔离区域,利用N注入方式隔离有源无源区域;4)在钝化层4上有源区域制作源电极结构32和漏电极结构33;5)在钝化层4上光刻宽度为的第一栅电极层311;采用优化的ICP蚀刻工艺,软刻蚀(softetch)取消射频偏压(RFbias),临界尺寸损失(CDloss)<20nm,得到宽度为的第二栅电极层312;6)在第二栅电极层312上光刻第三栅电极层313,第三栅电极层313的宽度为利用电子束蒸发工艺,在栅电极图形区蒸发栅金属制作栅电极结构31;7)在完成栅电极结构31制作的样品表面进行低温退火,增强栅金属粘附性,降低栅电极结构31漏电;8)在样品表面光刻金属互连层区域,利用电子束蒸发工艺制作金属互连层,用于引出源电极和漏电极,完成器件制作。上述(5)~(6)步骤可替换为自对准栅工艺,消除常规套刻工艺的误差,减少光刻步骤,提高器件制备过程的成品率。具体步骤如下:51)在钝化层上采用三层胶工艺,光刻宽度为的第一栅电极层311,宽度为的第三栅电极层313;采用优化的ICP蚀刻工艺,软刻蚀(softetch)取消射频偏压(RFbias),临界尺寸损失(CDloss)<20nm,得到宽度为的第二栅电极层312;61)利用电子束蒸发工艺,在栅电极图形区蒸发栅金属制作栅电极结构31。以上所述,仅为本技术较佳实施例而已,故不本文档来自技高网
...

【技术保护点】
1.一种高电子迁移率晶体管结构,包括依次形成于衬底上方的成核层、缓冲层、沟道层、AlGaN势垒层,AlGaN势垒层上表面形成有间隔设置的源、漏、栅电极结构,源、漏、栅电极结构之间具有钝化层,其特征在于:栅电极结构由第一栅电极层,设于第一栅电极层上且宽度大于第一栅电极层的第二栅电极层,设于第二栅电极层上且宽度大于第二栅电极层的第三栅电极层组成。/n

【技术特征摘要】
1.一种高电子迁移率晶体管结构,包括依次形成于衬底上方的成核层、缓冲层、沟道层、AlGaN势垒层,AlGaN势垒层上表面形成有间隔设置的源、漏、栅电极结构,源、漏、栅电极结构之间具有钝化层,其特征在于:栅电极结构由第一栅电极层,设于第一栅电极层上且宽度大于第一栅电极层的第二栅电极层,设于第二栅电极层上且宽度大于第二栅电极层的第三栅电极层组成。


2.根据权利要求1所述的一种高电子迁移率晶体管结构,其特征在于:所述第二栅电极层厚度小于或等于所述第一栅电极层,所述第三栅电极层厚度小于或等于所述第二栅电极层。


3.根据权利要求1所述的一种高电子迁移率晶体管结构,其特征在于:所述第一栅电极层厚度大于


4.根据权利要求1所述的一种高电子迁移率晶体管结构,其特征在于:所述第一栅电极层宽度为<...

【专利技术属性】
技术研发人员:林志东蔡仙清刘胜厚张辉孙希国
申请(专利权)人:厦门市三安集成电路有限公司
类型:新型
国别省市:福建;35

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1