一种结合轻量化网络的目标检测方法技术

技术编号:28980287 阅读:41 留言:0更新日期:2021-06-23 09:27
本发明专利技术提供一种结合轻量化网络的目标检测方法,旨在解决UAV这种小目标检测速度和精度的权衡问题,还实现了网络模型的轻量化,为实现嵌入式平台上的目标检测提供了可能。根据无人机具有体积小,飞行速度快等特点,本发明专利技术提出了一种结合轻量化网络改进的快速目标检测算法。对三个特征尺度进行检测的YOLOv3算法扩展为五个特征尺度来检测,提高了无人机等小目标场景的检测性能。结合轻量化网络中的Ghost模块构建了轻量的特征提取网络,为了进一步提升网络的检测性能,加入通道注意力机制抑制了不利的信息。本发明专利技术中生成了一个城市背景的UAV数据集用于训练。实验结果表明,本发明专利技术提出的方法能有效提高UAV在复杂城市背景下的检测精度和满足实时性要求。

【技术实现步骤摘要】
一种结合轻量化网络的目标检测方法
本专利技术涉及深度学习、目标检测领域,具体涉及一种结合轻量化网络的目标检测方法。
技术介绍
随着科学技术的发展,各种无人机相继出现,其中民用无人机发展迅速,广泛应用于各个领域,无人机的应用能大幅度降低高空作业的成本,在监视和拍摄等领域有着独特的优势,无人机技术在给人民生活带来方便的同时也给国家和社会带来了很多潜在的威胁,比如,近年来,很多的无人机事故造成了飞机无法起飞或者被迫逼停的情况,无人机的监管成为了社会关注的焦点。无人机具有体积小,飞行速度快、旋转性高等特点,传统目标检测方法难以达到要求,基于深度神经网络的目标检测方法展现了其强大的检测性能。近年来深度学习的高速发展为目标检测算法注入了新的血液,自从AlexNet在2012年的ImageNet大赛中轻松夺冠以来,各种基于深度神经网络的目标检测算法层出不穷,并取得了令人惊叹的优异成绩。我们可将基于深度卷积神经网络的目标检测算法大致分为两类,一类是基于锚点(Anchorbased)的目标检测算法,另一类是没有锚点(AnchorFree)的方法。基于Anchor本文档来自技高网...

【技术保护点】
1.一种结合轻量化网络的目标检测方法,其特征在于,包括以下的步骤:/n步骤1、生成数据集:首先获得一组包含当前市场上各种常见的UAV图像,与提前已经采集好的复杂城市背景图像简单进行相加操作,并记录下无人机所在的位置作为标签,这样就得到了复杂城市背景下的无人机图像,划分为训练集和测试集;/n步骤2、数据预处理:为了使得图像更加符合格式要求和使样本多样性,对训练数据集进行图像增强操作,包括水平翻转和几何变化;/n步骤3、构建基于轻量化网络的多尺度特征检测网络,网络框架主要包含了幽灵网络骨干部分(Ghost backbone)、颈部部分(Neck)和预测部分(Prediction)三个部分,幽灵网络...

【技术特征摘要】
1.一种结合轻量化网络的目标检测方法,其特征在于,包括以下的步骤:
步骤1、生成数据集:首先获得一组包含当前市场上各种常见的UAV图像,与提前已经采集好的复杂城市背景图像简单进行相加操作,并记录下无人机所在的位置作为标签,这样就得到了复杂城市背景下的无人机图像,划分为训练集和测试集;
步骤2、数据预处理:为了使得图像更加符合格式要求和使样本多样性,对训练数据集进行图像增强操作,包括水平翻转和几何变化;
步骤3、构建基于轻量化网络的多尺度特征检测网络,网络框架主要包含了幽灵网络骨干部分(Ghostbackbone)、颈部部分(Neck)和预测部分(Prediction)三个部分,幽灵网络骨干部分(Ghostbackbone)部分采用一系列的幽灵网络骨干部分(Ghostbottleneck)堆叠而成,颈部部分(Neck)部分就是一个完整的特征金字塔(FPN)形式,包含了五个特征尺度,预测部分(Prediction)部分根据设置的锚点(Anchor)在各层级特征图上对目标进行预测;
步骤4、设计基于轻量化网络的多尺度特征检测网络的损失函数:采用FocalLoss通过赋予正负例样本不同权重的方法指导模型的训练,在五个特征尺度预测计算损失,总损失为五个特征尺度损失之和,使用Adam优化器对网络进行学习优化;
步骤5、根据设置的损失函数指导模型训练,使用步骤1中得到的训练集进行训练网络直到收敛,记录并保存最小损失的模型权重,获得最优的网络模型;
步骤6、多目标检测:利用基于轻量化网络的多尺度特征检测网络进行目标检测,加载已经保存的最优网络模型权重,使用步骤1中得到的测试集进行测试。


2.根据权利要求1所述的一种结合轻量化网络的目标检测方法,其特征在于,步骤1数据获取过程为首先获得一组包含当前市场上各种常见的UAV图像,通过对其进行旋转、尺度缩放等操作后与提前已经采集好的复杂城市背景图像简单进行相加,并记录下无人机所在的位置作为标签,这样就得到了复杂城市背景下的无人机图像,划分为训练集和测试集,生成的训练集共有12100张,其中每张图像都包含了16个姿态、类型和大小不同的无人机,图像的大小为416×416,测试集有1210张,每张图像都包含了8个姿态、类型和大小不同的无人机。


3.根据权利要求1所述的一种结合轻量化网络的目标检测方法,其特征在于,步骤2数据预处理中采用图像增强方法中对训练集进行了...

【专利技术属性】
技术研发人员:毛耀李鸿杨锦辉彭锦锦胡钦涛刘超杜芸彦
申请(专利权)人:中国科学院光电技术研究所
类型:发明
国别省市:四川;51

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1