用于活塞环的超耐磨抗冲击多层DLC涂层及生产工艺制造技术

技术编号:28931216 阅读:12 留言:0更新日期:2021-06-18 21:28
本发明专利技术公开了一种用于活塞环的超耐磨抗冲击多层DLC涂层,其包括依次生成在活塞环的基体上的磁控溅射的基底层、磁控溅射的支撑层以及ta‑C功能层,所述的ta‑C功能层为磁控溅射生成的S‑C层与电弧沉积生成的A‑C层交替设置多次重复生成的功能层。本发明专利技术的用于活塞环的超耐磨抗冲击多层DLC涂层,采用磁控溅射生成金属打底,磁控溅射生成支撑层,ta‑C采用磁控溅射生成S‑C层,采用直流电源电弧沉积生成A‑C层,制成的DLC涂层表面硬度能达到HV2500~3500HV,CrMeN支撑层硬度能达到1500~2500HV,而且生成的DLC涂层在400℃高温下的耐磨、抗冲击的能力大幅度提升,能够满足内燃机活塞环组副的苛刻的摩擦工况条件,使DLC涂层在汽车零部件特别是活塞环上的得到推广应用。

【技术实现步骤摘要】
用于活塞环的超耐磨抗冲击多层DLC涂层及生产工艺
本专利技术涉及涂层材料及涂层生产工艺
,特别是涉及一种用于活塞环的超耐磨抗冲击多层DLC涂层及生产工艺。
技术介绍
随着低碳排放标准要求越来越苛刻,提高发动机的燃油经济性迫在眉睫。发动机零件如活塞环的外圆面设置低摩擦系数的DLC涂层可以有效降低摩擦功消耗,提高发动机的能源转化率。发动机的活塞环中,第一道压缩环的使用工作温度在300~400℃,在缸体内进行上下反复运动,需要承受较强的冲击和高温,传统的活塞环使采用PACVD沉积工艺在活塞环表面生成DLC(如WC+a:C-H),其耐高温性能差,容易析氢,抗冲击性也不佳。而采用石墨靶材通过电弧沉积获得的单一结构ta-C虽有改善,但是在300~400℃的高温条件下仍存在SP3金刚石相转为SP2石墨相的风险。因而现有的活塞环上使用的DLC涂层仍然无法完全满足内燃机活塞环组副的苛刻的摩擦工况条件,在高温条件下的涂层性能极大地限制了DLC涂层在汽车零部件特别是活塞环上的进一步推广应用,因而需要对其进行改进。
技术实现思路
本专利技术针对
技术介绍
中所述的现有的DLC涂层无法完全满足内燃机活塞环组副的苛刻的摩擦工况条件的问题,提供一种能解决前述问题的用于活塞环的超耐磨抗冲击多层DLC涂层。本专利技术解决其技术问题所要采用的技术方案是:一种用于活塞环的超耐磨抗冲击多层DLC涂层,其包括依次生成在活塞环的基体上的磁控溅射的基底层、磁控溅射的支撑层以及ta-C功能层,所述的ta-C功能层为磁控溅射生成的S-C层与电弧沉积生成的A-C层交替设置多次重复生成的功能层。进一步的方案是,所述的支撑层为CrMeN支撑层,其中的Me包括但不限于Mo和V,支撑层的厚度为2~4μm。Me的成分不限于Mo和V,还可以有其他选择,技术人员可以根据对零件的性能要求进行选择。进一步的方案是,所述的基底层为Cr基底层,所述的Cr基底层的厚度为0.1~0.8μm。基底层的材料可以有多种选择,本专利技术以Cr作为基底层只是一种举例,并非是对基底层材料的限定。进一步的方案是,所述的ta-C功能层中,S-C层与A-C层交替次数为10-50次,每层S-C层的厚度为50~100nm,每层A-C层的厚度为250~300nm,设置在CrMeN支撑层外表面的为S-C层,设置在ta-C功能层最外部的是A-C层。本专利技术的另一个目的在于提供一种用于活塞环的超耐磨抗冲击多层DLC涂层的生产工艺,其包括以下生产步骤:S1用九槽清洗生产线清洗需要生成涂层的活塞环工件;S2将清洗好的活塞环工件固定在转架上,将整个转架放入涂层设备内,涂层设备为具有磁控溅射和电弧沉积功能的涂层设备;S3涂层设备内部装入磁控Cr,Me(Me=Mo,V),磁控C,电弧C四组靶材,抽真空至本底真空5×10-3Pa,涂层设备加热到160-200℃,将转架的转速设置在1-3转/分钟;S4Ar+离子清洗;涂层设备内气压和温度稳定在上述的数值后,通入高纯度Ar气,使气压控制在0.6-1.0Pa,灯丝上部加热持续离子化Ar气,产生Ar+离子,同时底部辅助阳极通电,吸收离子化产生的电子,得到高浓度的Ar+离子,在基体上施加-200V到-500V的负偏压,得到的Ar+离子与零件之间形成很高的电势差,Ar+离子被吸附到活塞环工件的基体上,不断撞击基体表面,清理基体表面的固体物质同时使零件表面材料活性增加;S5沉积Cr基底层:通入Ar气的流量控制在200-500sccm,通过Ar调节腔体气压至0.3-0.5Pa,在在基体上施加-20到-80V的负偏压,Cr组靶材通电,总功率为6-15KW,沉积Cr基底层900-1800s;S6磁控溅射生成CrMeN支撑层,保持Cr靶材工作,同时Me靶材打开工作,通入氮气500-800sccm,调节气压0.3-0.5Pa,对基体施加-20到-150V负偏压,制备CrMeN支撑层,沉积时间3600-7200s;S7沉积ta-C功能层:关闭Cr及Me靶,先打开磁控C靶,通入Ar气,调节气压0.3-0.5Pa,维持温度160-200℃,在基体上施加-20到-100V的负偏压,功率8-10KW,沉积时间360-600s,制备沉积S-C层;关闭磁控C靶,打开电弧C靶,调节气压2-5Pa,维持温度160-200℃,脉冲电流80-1000A,占空比5~100%,在基体上施加-40到-80V的负偏压,沉积时间600-900s,制备A-C层;S8重复步骤S7的沉积过程多次,使-C层和A-C层多次交替生成,完成ta-C功能层的制备。进一步的方案是,在步骤S5中,Cr基底层的沉积厚度为0.1~0.8μm。进一步的方案是,在步骤S6中,CrMeN支撑层的沉积厚度为2~4μm。进一步的方案是,在步骤S8中,ta-C功能层中S-C层和A-C层的交替生成次数为15-50层,每层S-C层的厚度为50~100nm,每层A-C层的厚度为250~300nm,设置在CrMeN支撑层外表面的为S-C层,设置在ta-C功能层最外部的是A-C层。本专利技术的有益效果是:1)本专利技术提供的用于活塞环的超耐磨抗冲击多层DLC涂层,采用磁控溅射生成Cr金属打底,磁控溅射获得的CrMeN(Me=Mo,V)作为支撑层(2~4μm),ta-C功能层采用磁控溅射石墨靶材(简称S-C:50~100nm)作为碳膜生长层,电弧采用直流电源沉积(简称A-C:250~300nm),每层S-C层和A-C层叠加厚度控制在300~400nm,循环次数:15~50,实现ta-C功能层总厚度5~15μm可调,制成的DLC涂层,表面硬度能达到HV2500~3500HV,CrMeN支撑层硬度能达到1500~2500HV,而且生成的DLC涂层在400℃高温下的耐磨、抗冲击的能力大幅度提升,能够满足内燃机活塞环组副的苛刻的摩擦工况条件,使DLC涂层在汽车零部件特别是活塞环上的得到推广应用。附图说明图1是本专利技术的用于活塞环的超耐磨抗冲击多层DLC涂层的结构示意图。图2是本专利技术的用于活塞环的超耐磨抗冲击多层DLC涂层的截面结构示意图。图中:活塞环工件1,基体2,DLC涂层3,Cr基底层31,CrMeN支撑层32,ta-C功能层33,S-C层331,A-C层332。具体实施方式现在结合附图对本专利技术作进一步详细的说明。这些附图均为简化的示意图,仅以示意方式说明本专利技术的基本结构,因此其仅显示与本专利技术有关的构成,方向和参照(例如,上、下、左、右等等)可以仅用于帮助对附图中的特征的描述。因此,并非在限制性意义上采用以下具体实施方式,并且仅仅由所附权利要求及其等同形式来限定所请求保护的主题的范围。如图1所示,本专利技术的用于活塞环的超耐磨抗冲击多层DLC涂层,其包括依次生成在活塞环1的基体2上的磁控溅射的Cr基底层31、磁控溅射的CrMeN支撑层32以及ta-C功能层33,所述的ta-C功能层33为磁控溅射生成的S-C层331与电弧沉积生成本文档来自技高网...

【技术保护点】
1.一种用于活塞环的超耐磨抗冲击多层DLC涂层,其特征在于:其包括依次生成在活塞环的基体上的磁控溅射的基底层、磁控溅射的支撑层以及ta-C功能层,所述的ta-C功能层为磁控溅射生成的S-C层与电弧沉积生成的A-C层交替设置多次重复生成的功能层。/n

【技术特征摘要】
1.一种用于活塞环的超耐磨抗冲击多层DLC涂层,其特征在于:其包括依次生成在活塞环的基体上的磁控溅射的基底层、磁控溅射的支撑层以及ta-C功能层,所述的ta-C功能层为磁控溅射生成的S-C层与电弧沉积生成的A-C层交替设置多次重复生成的功能层。


2.如权利要求1所述的用于活塞环的超耐磨抗冲击多层DLC涂层,其特征在于:所述的支撑层为CrMeN支撑层,其中的Me包括但不限于Mo和V,支撑层的厚度为2~4μm。


3.如权利要求1所述的用于活塞环的超耐磨抗冲击多层DLC涂层,其特征在于:所述的基底层为Cr基底层,所述的Cr基底层的厚度为0.1~0.8μm。


4.如权利要求1所述的用于活塞环的超耐磨抗冲击多层DLC涂层,其特征在于:所述的ta-C功能层中,S-C层与A-C层交替次数为10-50次,每层S-C层的厚度为50~100nm,每层A-C层的厚度为250~300nm,设置在CrMeN支撑层外表面的为S-C层,设置在ta-C功能层最外部的是A-C层。


5.一种用于活塞环的超耐磨抗冲击多层DLC涂层的生产工艺,其特征在于:其包括以下生产步骤:
S1用九槽清洗生产线清洗需要生成涂层的活塞环工件;
S2将清洗好的活塞环工件固定在转架上,将整个转架放入涂层设备内,涂层设备为具有磁控溅射和电弧沉积功能的涂层设备;
S3涂层设备内部装入磁控Cr,Me(Me=Mo,V),磁控C,电弧C四组靶材,抽真空至本底真空5×10-3Pa,涂层设备加热到160-200℃,将转架的转速设置在1-3转/分钟;
S4Ar+离子清洗;涂层设备内气压和温度稳定在上述的数值后,通入高纯度Ar气,使气压控制在0.6-1.0Pa,灯丝上部加热持续离子化Ar气,产生Ar+离子,同时底部辅助阳极通电,吸收离子化产生的电子,得到高浓度的Ar+离子,在基体上施加-200V到-500V的负偏压,得到的Ar+离子与零件之间形成很高的电势差,Ar+离...

【专利技术属性】
技术研发人员:姜鑫张军金章斌邓晓良
申请(专利权)人:苏州吉恒纳米科技有限公司
类型:发明
国别省市:江苏;32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1