一种基于边缘增强的扩展目标波前探测方法技术

技术编号:28618014 阅读:13 留言:0更新日期:2021-05-28 16:13
本发明专利技术涉及一种基于边缘增强的扩展目标波前探测方法,包括S1,获取待测扩展目标图像;S2,利用边缘增强算子对每幅待测扩展目标图像进行边缘增强;S3,计算S2所得的每幅图像与模板图像的相关矩阵;S4,找出每个相关度矩阵的最大值,计算出待测扩展目标图像与模板图像的相对位置偏移量;S5,将相对位置偏移量向量与像差模式系数重构矩阵相乘,得到波前像差模式系数,完成波前测量。本发明专利技术利用边缘增强算子对哈特曼波前传感器子孔径所得图像进行边缘增强后,在低对比度情况下,图像带入相关函数计算所得的相关矩阵准确度可大幅提升,进而提升子孔径所得图像与模板图像之间的相对位移量的计算准确度,最终使得波前像差系数重构精度得到显著提升。

【技术实现步骤摘要】
一种基于边缘增强的扩展目标波前探测方法
本专利技术涉及光学测量
,尤其涉及一种基于边缘增强的扩展目标波前探测方法。
技术介绍
扩展目标波前探测方法主要作用是在需要对扩展目标成像的光学系统中探测光路中的波前像差信息。在进行此类像差波前探测的系统中,一般使用哈特曼波前传感器对目标分子孔径进行成像,然后利用相关算法计算出各子孔径图像与模板图像之间的相关矩阵,进而通过插值算法得到各子孔径图像与模板图像之间的相对位置偏移信息,最后利用相对位置偏移信息向量与模式重构矩阵进行计算获得波前像差斜率信息。在此过程中,利用相关算法计算相关矩阵是整个测量过程的核心计算步骤,其准确度直接影响着波前像差的测量精度。现有对于相关算法计算准确度的分析和研究主要集中在使用不同的相关函数、模板选择方法及插值计算方法上,对于计算使用的子孔径图像及模板图像一般直接由子孔径成像所得或者将子孔径成像所得图像经过高斯滤波去除噪声后带入相关函数进行计算。然而,对于图像对比度及清晰度较低的场景,将子孔径原始图像或滤波去除噪声后的图像直接带入相关函数计算所得的相关矩阵准确度较低,进而使得波前探测系统无法准确实现波前像差的测量。
技术实现思路
本专利技术为了解决上述技术问题提供一种基于边缘增强的扩展目标波前探测方法。本专利技术通过下述技术方案实现:一种基于边缘增强的扩展目标波前探测方法,包括以下步骤:S1,获取各个子孔径成像所得的待测扩展目标图像;S2,利用边缘增强算子对S1所得的每幅待测扩展目标图像进行边缘增强;S3,计算S2所得的每幅图像与模板图像的相关矩阵;S4,找出S3所得的每个相关度矩阵的最大值,利用插值运算计算出每幅待测扩展目标图像相对所述模板图像的相对位置偏移量;S5,将S4所得的各子孔径的相对位置偏移量向量与像差模式系数重构矩阵相乘,得到波前像差模式系数,完成波前测量。其中,所述边缘增强算子为Laplacian算子、Sobel算子、Prewitt算子、Roberts算子中的一种。进一步的,所述S3中的模板图像采用与所述S2相同的边缘增强算子进行了边缘增强。其中,所述S3中,利用能够量化两幅图像之间相关程度的函数计算S2所得的每幅图像与模板图像的相关矩阵;其中,所述的能够量化两幅图像之间相关程度的函数为绝对差分函数、绝对差分平方函数、平方差分函数、互相关函数、归一化互相关函数中的一种。其中,所述S4中使用的插值算法为等角线插值、抛物线插值、高斯插值、最小二乘插值中的一种。优选地,所述的波前像差的像差模式为泽尼克模式或勒让德模式。与现有技术相比,本专利技术具有以下有益效果:本专利技术与现有技术相比的优点在于:(1)本专利技术利用边缘增强算子对哈特曼波前传感器子孔径所得图像进行边缘增强后,在低对比度情况下,图像带入相关函数计算所得的相关矩阵准确度可大幅提升,进而提升子孔径所得图像与模板图像之间的相对位移量的计算准确度,最终使得波前像差系数重构精度得到显著提升;(2)本专利技术使用的边缘增强算子在空域尺度较小,依据算子不同分为2×2或者3×3两种情况,其进行边缘增强的计算量相比子孔径图像与模板图像进行相关运算的计算量低一个数量级以上,因此不会使波前测量过程的计算耗时出现明显增加,可保持测量过程的实时性。附图说明此处所说明的附图用来提供对本专利技术实施例的进一步理解,构成本申请的一部分,并不构成对本专利技术实施例的限定。图1是本专利技术流程图。具体实施方式为使本专利技术的目的、技术方案和优点更加清楚明白,下面结合实施例和附图,对本专利技术作进一步的详细说明,本专利技术的示意性实施方式及其说明仅用于解释本专利技术,并不作为对本专利技术的限定。如图1所示,本专利技术公开的基于边缘增强的扩展目标波前探测方法,包括以下步骤:S1,获取各个子孔径成像所得的待测扩展目标图像;S2,利用边缘增强算子对S1所得的每幅待测扩展目标图像进行边缘增强;S3,计算S2所得的每幅图像与模板图像的相关矩阵;S4,找出S3所得的每个相关度矩阵的最大值,利用插值运算计算出每幅待测扩展目标图像相对所述模板图像的相对位置偏移量;S5,将S4所得的各子孔径的相对位置偏移量向量与像差模式系数重构矩阵相乘,得到波前像差模式系数,完成波前测量。基于上述扩展目标波前探测方法,本专利技术公开一实施例。实施例1步骤1,利用哈特曼波前传感器分孔径获取各个子孔径成像所得的待测扩展目标图像。具体的,将哈特曼波前传感器的放置在能够保证其微透镜阵列与扩展目标成像系统光瞳共轭的位置,利用感光芯片位于哈特曼波前传感器微透镜阵列焦平面处的图像采集设备采集哈特曼波前传感器各子孔径成像所得的待测扩展目标图像。步骤2,利用边缘增强算子对步骤1所得的每幅图像进行边缘增强,具体如下:2.1,首先在Laplacian算子、Sobel算子、Prewitt算子、Roberts算子中确定要使用的边缘增强算子;2.2,按照所选用算子生成对应的图像增强模板矩阵Mask;2.3,将步骤2.1所得的每幅子孔径所得图像I与模板算子进行相关运算,得到边缘增强后的各子孔径图像I’,其计算公式如式(1)所示:式(1)中,M和N为图像I的高度与宽度;i、j和m、n为矩阵坐标;Mask的大小为2a+1,如选用拉普拉斯算子,则a取值为1。本实施例使用的边缘增强算子在空域尺度较小,依据算子不同分为2×2或者3×3两种情况,其进行边缘增强的计算量相比子孔径图像与模板图像进行相关运算的计算量低一个数量级以上,因此不会使波前测量过程的计算耗时出现明显增加,可保持测量过程的实时性。步骤3,利用能够量化两幅图像之间相关程度的函数,计算步骤2所得的每幅图像I’与使用了相同增强算子进行边缘增强后的模板图像IS的相关矩阵S。其中,所用计算相关矩阵的相关函数为绝对差分函数、绝对差分平方函数、平方差分函数、互相关函数或归一化互相关函数中的一种。本实例中选用互相关函数进行计算,则相关矩阵S计算公式如式(2)所示:式(2)中,M和N分别为模板图像IS的高度和宽度;i、j和m、n为矩阵坐标;I’图像大小为2a+1,a为图像I’的半径。步骤4,找到步骤3所得的每个相关度矩阵的最大值,利用插值算法计算出每幅子孔径成像所得的待测扩展目标图像相对位置偏移量。具体如下:4.1,找到相关矩阵S中最大值的位置,将其坐标记录为m:4.2,在等角线插值、抛物线插值、高斯插值、最小二乘插值中选用一种插值方法,计算出步骤1所得的每幅图像相对模板图像的相对位置偏移量xPI。以选用抛物线插值为例,xPI的计算公式如式(3)所示:步骤5,利用步骤4所得的各子孔径相对位置偏移量向量与像差模式系数重构矩阵相乘,得到波前像差模式系数。其具体过程为:在开始波前测量之前,依据哈特曼子孔径位置关系及微透镜阵列参数本文档来自技高网...

【技术保护点】
1.一种基于边缘增强的扩展目标波前探测方法,其特征在于:包括以下步骤:/nS1,获取各个子孔径成像所得的待测扩展目标图像;/nS2,利用边缘增强算子对S1所得的每幅待测扩展目标图像进行边缘增强;/nS3,计算S2所得的每幅图像与模板图像的相关矩阵;/nS4,找出S3所得的每个相关度矩阵的最大值,利用插值运算计算出每幅待测扩展目标图像相对所述模板图像的相对位置偏移量;/nS5,将S4所得的各子孔径的相对位置偏移量向量与像差模式系数重构矩阵相乘,得到波前像差模式系数,完成波前测量。/n

【技术特征摘要】
1.一种基于边缘增强的扩展目标波前探测方法,其特征在于:包括以下步骤:
S1,获取各个子孔径成像所得的待测扩展目标图像;
S2,利用边缘增强算子对S1所得的每幅待测扩展目标图像进行边缘增强;
S3,计算S2所得的每幅图像与模板图像的相关矩阵;
S4,找出S3所得的每个相关度矩阵的最大值,利用插值运算计算出每幅待测扩展目标图像相对所述模板图像的相对位置偏移量;
S5,将S4所得的各子孔径的相对位置偏移量向量与像差模式系数重构矩阵相乘,得到波前像差模式系数,完成波前测量。


2.根据权利要求1所述的基于边缘增强的扩展目标波前探测方法,其特征在于:所述边缘增强算子为Laplacian算子、Sobel算子、Prewitt算子、Roberts算子中的一种。


3.根据权利要求1所述的基于边缘增强的扩展目标波前...

【专利技术属性】
技术研发人员:杨博宋伟红
申请(专利权)人:四川中科朗星光电科技有限公司
类型:发明
国别省市:四川;51

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1