基于标记像素矩阵的遥感影像分割后处理算法制造技术

技术编号:27939022 阅读:40 留言:0更新日期:2021-04-02 14:20
本发明专利技术公开了基于标记像素矩阵的遥感影像分割后处理算法,涉及遥感测绘地理信息技术领域,其包括以下步骤:a1、读取遥感图像数据。该基于标记像素矩阵的遥感影像分割后处理算法,通过无人机或者卫星拍照单元采集遥感影像数据并读取遥感图像数据,然后基于深度学习训练模型预测待处理图片,接下来进行二分类结果二值化处理即将预测结果处理成二值化图像,之后进行多分类结果循环rgb值并合并结果,填充特定大小阈值以内的孔洞,最后统一填充并在输出后处理成果物,从而解决了现今卫星拍摄的高分辨率遥感影像分割速度较慢、边缘融合效果差进而导致拍摄结果差、错分的问题。

【技术实现步骤摘要】
基于标记像素矩阵的遥感影像分割后处理算法
本专利技术涉及遥感测绘地理信息
,具体为基于标记像素矩阵的遥感影像分割后处理算法。
技术介绍
语义分割是当今计算机视觉领域的关键问题之一,从宏观上看,语义分割是一项高层次的任务,为实现场景的完整理解铺平了道路,场景理解作为一个核心的计算机视觉问题,其重要性在于越来越多的应用程序通过从图像中推断知识来提供营养,其中一些应用包括自动驾驶汽车、人机交互、虚拟现实等,近年来随着深度学习的普及,许多语义分割问题正在采用深层次的结构来解决,最常见的是卷积神经网络,在精度以及效率上大大超过了其他方法,其涉及将一些原始数据例如:平面图像作为输入,并将它们转换为具有突出显示的感兴趣区域的掩模,专业术语为全像素语义分割,其中图像中的每个像素根据其所属的感兴趣对象被分配类别ID,图像分割是遥感解译的重要基础环节,高分辨率遥感图像中包含复杂的地物目标信息,我们在进行图像分割后,分割结果有时会有一些小孔洞,其中黑白两色表示两种不同的类别,一般情况下,这些孔洞属于错分情况,而为了优化结果,我们通常对这些孔洞进行填充,但是现今本文档来自技高网...

【技术保护点】
1.基于标记像素矩阵的遥感影像分割后处理算法,包括以下步骤:/na1、读取遥感图像数据;/na2、基于深度学习训练模型预测待处理图片;/na3、二分类结果二值化处理;/na4、多分类结果循环rgb值,合并结果;/na5、填充特定大小阈值以内的孔洞,设定阈值,计算每个孔洞的面积,如果面积大于阈值就不填充;/na6、统一填充,输出后处理成果物。/n

【技术特征摘要】
1.基于标记像素矩阵的遥感影像分割后处理算法,包括以下步骤:
a1、读取遥感图像数据;
a2、基于深度学习训练模型预测待处理图片;
a3、二分类结果二值化处理;
a4、多分类结果循环rgb值,合并结果;
a5、填充特定大小阈值以内的孔洞,设定阈值,计算每个孔洞的面积,如果面积大于阈值就不填充;
a6、统一填充,输出后处理成果物。


2.根据权利要求1所述的基于标记像素矩阵的遥感影像分割后处理算法,其特征在于:所述遥感图像数据通过无人机或者卫星拍照单元进行采集。


3.根据权利要求1所述的基于标记像素矩阵的遥感影像分割后处理算法,其特征在...

【专利技术属性】
技术研发人员:杜磊岐王江安
申请(专利权)人:陕西土豆数据科技有限公司
类型:发明
国别省市:陕西;61

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1