一种电腐蚀调控碳纤维增强复合材料表面结构与金属钎焊的方法技术

技术编号:27833003 阅读:16 留言:0更新日期:2021-03-30 11:45
一种电腐蚀调控碳纤维增强复合材料表面结构与金属钎焊的方法,它涉及一种碳纤维增强复合材料与金属钎焊的方法。本发明专利技术解决现有碳纤维增强复合材料与金属钎焊连接中,连接界面结构不佳与高残余应力所导致的低强度,且在室温下复合材料难以腐蚀的问题。制备方法:一、电腐蚀溶液的制备;二、电腐蚀表面处理;三、钎焊。本发明专利技术用于电腐蚀调控碳纤维增强复合材料表面结构与金属钎焊的方法。面结构与金属钎焊的方法。面结构与金属钎焊的方法。

【技术实现步骤摘要】
一种电腐蚀调控碳纤维增强复合材料表面结构与金属钎焊的方法


[0001]本专利技术涉及一种碳纤维增强复合材料与金属钎焊的方法。

技术介绍

[0002]碳纤维因具备高抗拉强度与较好的柔性,被广泛应用于增强陶瓷基体与高分子基体,可充分提高复合材料强度及断裂韧性。碳纤维增强陶瓷或碳纤维增强高分子在热防护与轻量化结构中占据主流应用地位。为满足实际生产需求,复合材料常需与金属进行连接。对于异种材料的连接,钎焊连接技术依靠熔化钎料对母材进行连接,可实现对属性差异较大的材料高效的连接。尽管如此,复合材料与金属的钎焊仍面临连接界面结构不佳及属性差异引起的高残余应力的问题。当钎焊同种金属时,钎料与金属发生冶金反应层及互扩散,无明显界面反应层或界面由大量金属基体组成,当受外载荷时母材金属、界面和钎料层的变形量接近,采用平面连接不会造成应力集中。而对于复合材料与金属的连接,钎料需与复合材料形成化合物反应层以保障连接强度,然而脆性反应层与钎料变形量相差巨大,承载外载荷必定引起应力集中,对于平面连接结构裂纹将沿反应层连续开裂。并且因属性差异萌生的残余应力将集中于反应层处,进一步削弱反应层强度,使得反应层成为接头中的薄弱环节。对复合材料表面结构进行调控进而改善连接界面结构,是提高接头强度的有效途径。
[0003]为调控复合材料表面结构,机械加工与激光加工成为最初的选择,可制备孔与沟槽等结构,钎料渗入其中形成钉扎效应,提高连接面积的同时,将反应层界面转为曲折结构。在承受外载荷时复合材料与钎料共同承载,缓解了反应层所承受载荷。然而机械加工面临的问题是加工密集程度有限,结构尺寸较大,反应层仍可发生连续开裂,对残余应力的缓解效果也较为有限;并且机械加工的机械切削力会造成基体或界面处形成微裂纹,严重影响复合材料致密性以及自身强度。而激光加工也同样面临加工尺寸大的问题,并且高热输入对于不同熔点的基体与增强相进行的烧蚀程度不一致,常造成接头前端或周围形成闭孔热裂纹,造成接头强度的大幅削弱。开发细致结构尺寸,避免机械切削力以及热输入的无损表面结构设计方法是急需解决的关键问题。
[0004]在对陶瓷材料的腐蚀研究中发现,腐蚀处理可对陶瓷表面结构造成影响。现有在室温调节下利用酸液或碱液对石英纤维增强石英基复合材料进行腐蚀,可溶蚀基体暴露出增强纤维,这是利用了不同材料的腐蚀速率差异而进行的结构调控,可完成纤维层面的结构调控,这种腐蚀的本质在于利用各相腐蚀速率差异对表面结构进行调控。室温腐蚀无需热输入或机械加工,避免了纤维与基体脱附或形成裂纹等问题造成的复合材料自身强度下降。然而对于大多数复合材料,尤其是耐腐蚀陶瓷基或树脂基复合材料,常规酸碱腐蚀难以达到相应的效果。面对应用范围广泛的碳纤维增强复合材料,急需一种室温条件下能有效调控碳纤维增强复合材料的腐蚀方法。

技术实现思路

[0005]本专利技术要解决现有碳纤维增强复合材料与金属钎焊连接中,连接界面结构不佳与高残余应力所导致的低强度,且在室温下复合材料难以腐蚀的问题,而提供一种电腐蚀调控碳纤维增强复合材料表面结构与金属钎焊的方法。
[0006]一种电腐蚀调控碳纤维增强复合材料表面结构与金属钎焊的方法,它是按以下步骤进行的:
[0007]一、电腐蚀溶液的制备:
[0008]将氧化剂、硬脂酸盐、三聚氰胺及乙二醇溶解于水中,然后在磁力搅拌条件下搅拌均匀,得到电腐蚀溶液;
[0009]所述的氧化剂与硬脂酸盐的质量比为1:(0.05~0.2);所述的氧化剂与三聚氰胺的质量比为1:(0.01~0.1);所述的氧化剂与乙二醇的质量比为1:(0.1~0.8);所述的氧化剂与水的质量比为1:(2~15);
[0010]二、电腐蚀表面处理:
[0011]利用电极夹装夹碳纤维增强复合材料,然后利用环氧树脂包裹非待焊表面,再置于装有电腐蚀溶液的电解池中,将碳纤维增强复合材料连接阳极,利用铂电极为阴极,利用甘汞电极为参比电极,在室温及腐蚀电位为1V~10V的条件下,腐蚀5min~120min,腐蚀后依次进行碱酸清洗、去除环氧树脂、去离子水清洗及干燥,得到电腐蚀处理后的碳纤维增强复合材料;
[0012]三、钎焊:
[0013]按电腐蚀处理后的碳纤维增强复合材料/钎料/金属的模式进行装配,得到钎焊试样,然后利用真空钎焊,在钎焊温度为200℃~1200℃的条件下,保温5min~30min,随炉冷却,即完成了电腐蚀调控碳纤维增强复合材料表面结构与金属钎焊的方法。
[0014]本专利技术的有益效果是:
[0015]本专利技术采用电化学腐蚀对碳纤维增强复合材料进行表面结构设计,为提高腐蚀效率,所配置的腐蚀液独特之处在于:提高氧化剂含量至浓溶液范围,充分提高溶液腐蚀性与导电性,其次硬脂酸盐、三聚氰胺与乙二醇的引入可消除或使得反应产生的气泡顺利逸出,防止作为反应产物的气泡阻碍腐蚀过程。利用碳纤维的高导电性,形成纤维与基体的腐蚀速率差异,对复合材料进行腐蚀,由于不同的腐蚀电位与阳极反应电流,纤维与基体将形成腐蚀原电池,加速对纤维的刻蚀;由于只有纤维为高导电同路,电流为寻求更多导电路径,将破坏表面处纤维与基体的薄弱界面从而形成缝隙,根据缝隙腐蚀原理,纤维与基体间缝隙的形成速度将远高于纤维自身的刻蚀,从而形成较深的腐蚀缝隙,而纤维尺寸基本保持不变,在保证表面缝隙形成的同时,碳纤维仍将起到增强接头的效果。钎料渗入缝隙之间,形成纤维增强钎料的界面结构,具有极大的比表面积。结构尺寸细化至纤维级别,连接面积大幅增长,反应层在纤维表面形成,原本平面结构反应层将转化为网络状结构,防止接头的脆断。并且纤维增强钎料的属性将介于复合材料与钎料之间,充分缓解接头因属性差异所导致的残余应力问题。
[0016]本专利技术电腐蚀调控碳纤维增强复合材料表面结构与金属钎焊具有诸多优点:一、针对室温下难于酸碱刻蚀的复合材料,若增强纤维为碳纤维则可制备出纤维与基体间的缝隙,从而与钎料形成交错的钉扎结构,不同于一般选择性腐蚀,腐蚀过程针对表面处纤维与
基体的界面进行刻蚀,腐蚀深度在10μm~150μm范围内纤维尺寸减少极其有限,不影响纤维的增加效果。连接面积大幅提升,反应层转为网络状结构,防止脆断发生,大幅提高接头的强度与断裂韧性。二、纤维作为钎料的增强相,碳纤维增强钎料的界面结构无需特种钎料或添加额外增强体。且纤维作为增强相含量高,并均匀分布在接头界面处,充分缓解属性差异,调控残余应力的产生与分布,提高接头质量。三、电化学腐蚀控制精确效率较高,无加热与机械力参与,保证复合材料自身性能,除腐蚀面,对复合材料内部与表面都没有影响,达到无损表面结构设计的要求,处理时间短生产效率高,具有很高的实际应用价值。
[0017]本专利技术制备的电化学腐蚀C
f
/SiC复合材料与Nb的焊接件接头强度可达162MPa,本专利技术制备的电化学腐蚀C
f
/C复合材料与Nb的焊接件接头强度可达38MPa。
[0018]本专利技术用于一种电腐蚀调控碳纤维增强复合材料表面结构与金属钎焊的方法。
附图说明...

【技术保护点】

【技术特征摘要】
1.一种电腐蚀调控碳纤维增强复合材料表面结构与金属钎焊的方法,其特征在于它是按以下步骤进行的:一、电腐蚀溶液的制备:将氧化剂、硬脂酸盐、三聚氰胺及乙二醇溶解于水中,然后在磁力搅拌条件下搅拌均匀,得到电腐蚀溶液;所述的氧化剂与硬脂酸盐的质量比为1:(0.05~0.2);所述的氧化剂与三聚氰胺的质量比为1:(0.01~0.1);所述的氧化剂与乙二醇的质量比为1:(0.1~0.8);所述的氧化剂与水的质量比为1:(2~15);二、电腐蚀表面处理:利用电极夹装夹碳纤维增强复合材料,然后利用环氧树脂包裹非待焊表面,再置于装有电腐蚀溶液的电解池中,将碳纤维增强复合材料连接阳极,利用铂电极为阴极,利用甘汞电极为参比电极,在室温及腐蚀电位为1V~10V的条件下,腐蚀5min~120min,腐蚀后依次进行碱酸清洗、去除环氧树脂、去离子水清洗及干燥,得到电腐蚀处理后的碳纤维增强复合材料;三、钎焊:按电腐蚀处理后的碳纤维增强复合材料/钎料/金属的模式进行装配,得到钎焊试样,然后利用真空钎焊,在钎焊温度为200℃~1200℃的条件下,保温5min~30min,随炉冷却,即完成了电腐蚀调控碳纤维增强复合材料表面结构与金属钎焊的方法。2.根据权利要求1所述的一种电腐蚀调控碳纤维增强复合材料表面结构与金属钎焊的方法,其特征在于步骤一中所述的氧化剂为NaOH、KOH、HNO3或H2SO4。3.根据权利要求1所述的一种电腐蚀调控碳纤维增强复合材料表面结构与金属钎焊的方法,其特征在于步骤一中所述的硬脂酸盐为硬脂酸钠或硬脂酸钾。4.根据权利要求1所述的一种电腐蚀调控碳纤维增强复合材料表面结构与金属钎焊的方法,其特征在于步骤二中所述的碳纤维增...

【专利技术属性】
技术研发人员:亓钧雷霸金纪旭王斌李培鑫曹健冯吉才
申请(专利权)人:哈尔滨工业大学
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1