利用微透镜或微棱镜阵列进行扫描的光学相干层析系统技术方案

技术编号:2694325 阅读:168 留言:0更新日期:2012-04-11 18:40
利用微透镜或微棱镜阵列进行扫描的光学相干层析系统,主要由光源、准直透镜、分光棱镜、多路光纤耦合装置、3片微透镜或微棱镜阵列、快速延迟线、探测器阵列、微位移装置组成,在多路光纤耦合装置的输出端通过一片微透镜或微棱镜阵列把多路光纤中的点光源变成空间光路中的平行光束,然后被第二片微透镜或微棱镜阵列聚焦到物体上,物体上的反射光束在分光棱镜上和被快速扫描延迟线反射回来的光相遇,当这两束光的光程相等的时候发生干涉,最终干涉信号通过第三片微透镜或微棱镜阵列被聚焦到探测器阵列上。本发明专利技术通过使用微透镜或微棱镜阵列在大大的提高了光学相干层析系统的扫描速度,减少获取三维层析图像的获取时间,降低了系统成本。

【技术实现步骤摘要】

本专利技术涉及一种光学相干层析技术,特别是一种利用微透镜或微棱镜阵列扫描的光学相干层析系统。
技术介绍
光学相干层析技术是一种新兴的层析技术,它相对于传统的层析技术而言,具有高分辨率、非接触、编写等特点,随着光学相干层析技术的发展、以及各个部件的不断改进,它的应用领域越来越广。一般传统光学相干层析系统组成如图1所示,这种系统采用点扫描的方式,主要由光源,分光棱镜,反射镜,光探测器组成,光源发出的光被分光棱镜分成两路一路称为样品臂,被透镜聚焦于样品上,然后被样品内部的微细结构反射或散射回来,假设这一路光从离开分光棱镜到重新回到分光棱镜的总光程为S1;另一路称为参考臂,被透镜聚焦到反射镜上,然后被反射回来,假设这一路光从离开分光棱镜到重新回到分光棱镜的总光程为S2。如果S1-S2≤相干长度,就会在分光棱镜上发生双光束干涉,此干涉信号被光探测器记录。纵向扫描是通过反射镜的上下移动改变S2,实现对于纵向深度S1的扫描。上述光学相干层析原理可以参见“Handbook of Optical CoherenceTomography”Brett E.Bouma Guillermo J.Tearney,MARCEL DEKKER INCP41-67。横向扫描系统如图2所示,通过振镜的左右摆动实现对于物体的横向一维扫描,如果要实现二维的横向扫描则需要两块振镜——也就是说,这种系统实际上是先对焦点以下的纵向信息进行记录,然后通过在物体表面移动焦点,实现横向的扫描。上述横向扫描装置的详细资料可以参见Handbookof Optical Coherence Tomography”Brett E.Bouma Guillermo J.Tearney,MARCEL DEKKER INC P125-143。这种系统的优点在于纵向扫描速度快,成像质量好。最近兴起另外一种系统-全场光学相干层析系统,基本结构和传统的点扫描系统一样,只是把图1中的点光源改为面光源,把探测器改为探测器阵列(如CCD)。其基本工作原理如下面光源发出的光被分光棱镜分成两路,一路被成像到物体上,另外一路被成像到反射镜上;工作的时候先固定反射镜位置,这样在样品臂上就可以扫描到一个等光程面,当面光源正好被成像到这个等光程面的时候,在探测器阵列就可以记录到样品的信息。这样整个被光源照亮的X-Y平面同时都被成像,然后移动反射镜就可以实现对Z方向的扫描。这种系统在提取物体信息时一般采用锁相检测,先对光源进行移相(一般为四步移相法),然后获得相应的移相后的四幅图像,通过对四幅图像的处理获得相应探测点的相位和振幅信息。这种系统的优点在于横向扫描速度快,扫描视场大。上述系统可以详细参见“Thermal-light full-fieldoptical coherence tomography”L.Vabre,A.Dubois,A.C.Boccara.Opt.Lett Vol 27,P530-533,2002。传统的点扫描系统的主要局限性在于(1)当进行X-Y面的扫描时,需要两片振镜进行扫描,所以系统成本高;(2)由于使用振镜扫描系统,为了权衡像差带来的影响,系统的扫描、视场小;(3)当需要扫描整个视场时,需要在物体表面逐点移动焦点,所以横向扫描速度慢。所以传统的点扫描系统很难实现对于物空间的大视场快速扫描,事实上在这种系统中横向扫描系统已经成为系统扫描视场和扫描速度的瓶颈。采用全场光学相干层析系统的局限性在于(1)采用移相器对光源进行移相调制时,由于移相器相差的存在,实际上只能对于光源中心频率的光进行了合适的移相,对于其他频率的光的移相,实质上是有偏差的,所以原理上就限制了这种层析系统的图象质量;(2)扫描时理论上的等光程面实际上是一个圆面,而不是平面,所以建立这种系统时需要复杂的标定工作,需要把圆面标定到平面;(3)这种系统在纵向扫描速度上不如传统的点扫描系统高。
技术实现思路
本专利技术的技术解决问题克服现有技术的不足,提供一种利用微透镜或微棱镜阵列进行扫描的光学相干层析系统,可以有效地解决现有光学相干层析系统中的扫描速度低、成本高,以及需要复杂的人为标定误差等问题,并且结构简单、扫描速度高、适宜于批量生产。本专利技术的技术解决方案是利用微透镜或微棱镜阵列进行扫描的光学相干层析系统,其特征在于主要由光源、准直镜、分光棱镜、微透镜或微棱镜阵列和多路光纤组成的多路光纤耦合装置、第一片微透镜或微棱镜阵列、第二片微透镜或微棱镜阵列、目标物体、第三片微透镜或微棱镜阵列、探测器阵列、微位移装置以及由相位光栅、傅立叶透镜、振镜、全反镜组成的快速扫描延迟线组成,第一片微透镜或微棱镜阵列、第二微透镜或微棱镜阵列以及多路光纤耦合装置的尾端都固定在微位移装置上,在多路光纤耦合装置的输出端通过第一片微透镜或微棱镜阵列把多路光纤中的点光源变成空间光路中的平行光束,然后被第二片微透镜阵列聚焦到目标物体上,目标物体上的反射光束在分光棱镜上和被快速扫描延迟线反射回来的光相遇,当这两束光的光程相等的时候发生干涉,最终干涉信号通过第三片微透镜或微棱镜阵列被聚焦到探测器阵列上。上述的微透镜或微棱镜阵列和探测器阵列可以是一维的,也可以是二维的;可以是方型阵列,也可以圆形或环行阵列。上述的微位移装置可以是压电陶瓷堆,也可是微机械位移装置或微动平台。上述的探测器阵列可以是光电二极管阵列,也可以是光电耦合器件,如CCD,CMOS等。上述的多路光纤耦合系统可以利用微透镜或微棱镜阵列作为耦合透镜,也可以是利用其他阵列耦合器件作为耦合透镜,如菲涅尔透镜等。快速扫描延迟线由相位光栅、傅立叶透镜、振镜、全反镜组成,其中相位光栅在傅立叶透镜的物方焦面上,振镜在傅立叶透镜的像方焦面上,相位光栅和振镜分别在傅立叶透镜的前后焦面上,光束首先被相位光栅反射到傅立叶透镜上,接着傅立叶透镜把光束聚焦到振镜上,振镜左右振动并且反射光束,使得光束经过傅立叶透镜和相位光栅镜后出射,全反射镜的作用是把第一次出射的光束再次反射回快速延迟线,充分补偿入射光束的群色散。专利技术的工作原理为点光源发出的光束被准直镜准直为平行光束,平行光束经过分数器分成两束,其中一束称为参考臂,经过快速扫描延迟线,然后再次回到分光棱镜上,其中快速延迟线的作用是实现样品纵向深度扫描;另外一束平行光称为样品臂,它被多路光纤耦合装置分成m×n路,在光纤输出端后面是第一片微透镜或微棱镜阵列,每个光纤都对应了相应的一个子孔径,而且都位于子孔径的后焦点上,所以多路光纤中的各个点光源被其对应的子孔径准直为m×n路平行光束,第二片微透镜或微棱镜阵列的m×n个子孔径把这m×n路平行光束聚焦到目标物体上,目标物体上的m×n路反射光束通过上述的样品臂光路再次到达分光棱镜上,当样品臂和参考臂的光程相等时,两支反射光在分光棱镜上发生干涉现象(m×n个干涉信号),这些干涉信号通过第三片微透镜或微棱镜阵列(m×n个子孔径)上面相应的子孔径聚焦到探测器阵列上,第一片微透镜或微棱镜阵列和第二片微透镜或微棱镜阵列以及m×n路光纤的尾端都固定在微位移装置上,通过微位移装置的横向移动实现对目标物体的横向扫描。专利技术与现有技术相比的优点如下(1)本专利技术通过使用阵列器件可以同时对于目标物体m×n个物点进行纵向扫描。相对于面阵光学相本文档来自技高网
...

【技术保护点】
利用微透镜或微棱镜阵列进行扫描的光学相干层析系统,其特征在于:主要由光源(1)、准直镜(2)、分光棱镜(3)、微透镜或微棱镜阵列(4)和多路光纤(5)组成的多路光纤耦合装置(15)、第一片微透镜或微棱镜阵列(6)、第二片微透镜或微棱镜阵列(7)、目标物体(8)、第三片微透镜或微棱镜阵列(13)、探测器阵列(14)、微位移装置(17)以及快速扫描延迟线(16)组成,第一片微透镜或微棱镜阵列(6)、第二微透镜或微棱镜阵列(7)以及多路光纤耦合装置(15)的尾端都固定在微位移装置(17)上,在多路光纤耦合装置(15)的输出端通过第一片微透镜或微棱镜阵列(6)把多路光纤(5)中的点光源变成空间光路中的平行光束,然后被第二片微透镜(7)阵列聚焦到目标物体(8)上,目标物体(8)上的反射光束在分光棱镜(3)上和被快速扫描延迟线(16)反射回来的光相遇,当这两束光的光程相等的时候发生干涉,最终干涉信号通过第三片微透镜或微棱镜阵列(13)被聚焦到探测器阵列(14)上。

【技术特征摘要】

【专利技术属性】
技术研发人员:史国华张雨东陈凯戴云王海英李恩德
申请(专利权)人:中国科学院光电技术研究所
类型:发明
国别省市:90[中国|成都]

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1