一种局域表面等离子体激元共振生物芯片、其制造方法、包含其的生物传感系统及其应用技术方案

技术编号:26594174 阅读:25 留言:0更新日期:2020-12-04 21:15
本发明专利技术公开了一种局域表面等离子体激元共振生物芯片,其包括:(1)基底;(2)设置在所述基底中部的多个光波导,所述多个光波导组成光波导阵列;(3)设置在每个所述光波导的侧表面上的氮化钛纳米立方体;(4)设置在基底中的多个微流体通道。此外,还提供了上述生物芯片的制造方法、包含上述生物芯片的生物传感系统及其应用。本发明专利技术的生物芯片既能够降低制造成本、提高检测精度同时还满足高通量快速检测的需求。

【技术实现步骤摘要】
一种局域表面等离子体激元共振生物芯片、其制造方法、包含其的生物传感系统及其应用
本专利技术涉及生物传感领域,特别是涉及一种局域表面等离子体激元共振生物芯片、其制造方法、包含其的生物传感系统及其应用等领域。
技术介绍
基于纳米技术的先进版本称为具有纳米结构的局域表面等离振子共振(LSPR),是一种建立在等离振子共振(SPR)无标记生物传感的技术。现有的SPR生物传感器大都基于银、金或银-金合金作为等离激元支持材料,以激发电子云的集体振荡。金通常是化学惰性的,是已建立的功能化方案的材料选择。然而,金作为等离激元支持材料存在两个缺陷,(i)金材料本身昂贵;和(ii)金膜的厚度高达约50nm,基于金的共振生物芯片制造成本高昂;这些缺陷妨碍了金基SPR生物传感器的广泛使用。基于此,本领域急需一种能够代替或减少金材料使用、且降低生物芯片制造成本的芯片结构及其制造方法。本专利技术人发现等离子氮化钛(TiN)材料可替代金材料用于无标记生物传感应用中,氮化钛材料的分辨率约为2×10-7折射率单位(RIU),与金纳米岛或金银双金属纳米岛(BMNIs)的分辨率几乎相同。牺牲热缩锡模板对薄膜进行进一步修饰,以在玻璃上形成氮化钛的纳米通孔。带有TiN纳米孔的LSPR生物传感实现了9×10-8RIU的分辨率,与AuNIs和BMNIs的分辨率相当。此外,使用生物素化抗体可以使氮化钛的功能直接实现,因此与金相比,氮化钛可以减少涉及的化学物质的数量,提高检测精度。综上,使用氮化钛材料代替金材料不但可实现基本相同的分辨率,还可进一步降低等离激元生物芯片的制造成本、提高流体样品的检测精度。尽管等离子材料的发展和固有的无标记优势,但现有的SPR设备在并行检测通道的数量上也受到限制。即使使用系统制造商提供的已建立的最先进的型号,即K8、Sierra、4SPR等,通常也仅包含四至八个通道。这远远不能满足高通量快速检测生物样品的需求。SPR系统中检测信道数量有限的原因是使用衰减全反射(ATR)配置。使用ATR配置将入射角调整到70度以上,导致反射的图像太小而无法以高保真度聚焦在焦点上,因此只能用于多路传输的区域非常有限。SPR系统的检测信道数量不足,导致并行处理能力受到极大限制,无法满足高通量快速检测生物样品的需求。因此,急需一种既能够降低制造成本、提高检测精度同时还满足高通量快速检测需求的LSPR共振生物芯片及其制造方法。
技术实现思路
为了克服现有技术的不足,本专利技术的目的在于:提供一种既能够降低制造成本、提高检测精度同时还满足高通量快速检测需求的局域表面等离子体激元共振生物芯片,其制造方法、包含其的生物传感系统及其应用。为实现上述目的,本专利技术的技术方案是:在一个方面,本专利技术提供一种局域表面等离子体激元共振生物芯片,其包括:(1)透明基底,其允许光透过;(2)设置在所述基底中部的多个光波导,所述多个光波导组成光波导阵列;(3)设置在每个所述光波导的侧表面上的氮化钛纳米立方体;(4)设置在基底的多个微流体通道。在优选的实施方案中,所述基底的组成材料可以为PMMA、PC、PS、BK7玻璃中的一种或多种,更优选PMMA或PC的聚合物,最优选为PMMA聚合物。其中,基底允许一定波长的光透过,以便通过测量光的折射率来流体样品的性质、种类及浓度。在优选的实施方案中,所述基底允许400-1200纳米波长的光透过,更优选600-900纳米波长的光透过。在优选的实施方案中,所述基底包括上部、中部和下部,所述上部、中部、下部可以由相同的或不同的材料组成,更优选由相同的材料组成。在优选的实施方案中,所述光波导的材料至少与设置所述光波导的基底中部的材料相同,更优选都为PMMA聚合物材料。在优选的实施方案中,所述光波导的直径为微米量级,更优选100-500微米,最优选约200微米;所述光波导的高度为1000-5000微米,更优选约1500微米;相邻光波导之间的距离为微米量级,更优选约100-500微米,最优选约200微米。在优选的实施方案中,所述光波导的数量为2-61个,更优选7-37个,最优选19个。在优选的实施方案中,所述光波导组成的光波导阵列数量为8-128个,更优选32-96个,最优选64个。在优选的实施方案中,所述光波导为柱状体,更优选为圆柱体;所述光波导的顶部和底部为锥面,更优选为内凹的锥面。在优选的实施方案中,所述氮化钛纳米立方体通过湿化学法和紫外线固化技术在光波导阵列的表面上分散并固定。在优选的实施方案中,所述氮化钛纳米立方体的大小为约40至50纳米,更优选约45纳米。在优选的实施方案中,所述微流体通道分为入口段、传送段和出口段,用于检测的流体样品由入口段流入、流经传送段的光波导、由出口段流出。在优选的实施方案中,所述微流体通道的数量与光波导阵列的数量相同,为8-128个,更优选32-96个,最优选64个。其中,各个微流体通道可以独立地检测相同或不同的流体样品。在又一个方面,本专利技术提供一种制造上文所述的局域表面等离子体激元共振生物芯片的方法,其包括:(1)提供基底材料;(2)生成下层微流体通道;(3)生成中层光波导和光波导阵列;(4)上层微流体通道;(5)在所述光波导的侧表面上分散并固定氮化钛纳米立方体。其中,上述方法中,步骤(2)至(4)之间的顺序不受限制。在优选的实施方案中,上述方法中,步骤(2)至(4)中的所述微流体通道、光波导和光波导阵列均通过3D打印成型。在优选的实施方案中,通过湿化学法和紫外线固化技术在所述光波导的侧表面上分散并固定氮化钛纳米立方体。在又一个方面,本专利技术提供一种生物传感系统,其包含上文所述的局域表面等离子体激元共振生物芯片。在又一个方面,本专利技术还提供上文所述的局域表面等离子体激元共振生物芯片或包含该芯片的生物传感系统用于流体样品检测中的用途。本专利技术的有益效果在于:1、使用氮化钛纳米材料代替金材料同时采用在基底中部形成带有氮化钛纳米立方体的光波导阵列,不但保证了分辨率同时还显著降低了材料成本;另外,氮化钛可以减少涉及的化学物质的数量,提高了检测精度。2、使用微米量级的光波导阵列和多个独立的微流体通道,增加了LSPR系统的检测信道数量,提高了并行处理能力、满足了高通量快速检测的需求。光波导的数量应适当,过少会导致检测信道数量减少,过多会阻碍流体样品自由流动。3、光波导顶部和底部采用锥面设计,不但可使光波导相关器件小型化,而且满足氮化钛纳米立方体产生共振的入射角度,从而提高了折射率变化测量的精确度,提高了样品检测的精度。4、PMMA、PC聚合物作为光波导的组成材料,不但可以实现与BK7玻璃等基本相同的折射率,而且还能与氮化钛纳米立方体通过化学键自组装固定在光波导上,方便制造、提高了制造效率且降低了成本。5、通过3D打印聚合物基底材料使其生成微流体通道、光波导及光波导阵列,极大地节省了工序,提高了制造效率,适合大规模应用。综上本文档来自技高网
...

【技术保护点】
1.一种局域表面等离子体激元共振生物芯片,其特征在于,包括:(1)透明基底,其允许光透过;(2)设置在所述基底中部的多个光波导,所述多个光波导组成光波导阵列;(3)设置在每个所述光波导的侧表面上的氮化钛纳米立方体;(4)设置在基底的多个微流体通道。/n

【技术特征摘要】
1.一种局域表面等离子体激元共振生物芯片,其特征在于,包括:(1)透明基底,其允许光透过;(2)设置在所述基底中部的多个光波导,所述多个光波导组成光波导阵列;(3)设置在每个所述光波导的侧表面上的氮化钛纳米立方体;(4)设置在基底的多个微流体通道。


2.根据权利要求1所述的等离子体激元共振生物芯片,其特征在于,所述基底的组成材料为PMMA、PC、PS、BK7玻璃中的一种或多种,优选PMMA或PC的聚合物,最优选为PMMA聚合物。


3.根据权利要求1所述的等离子体激元共振生物芯片,其特征在于,所述基底允许400至1200纳米波长的光透过,优选允许600-900纳米波长的光透过。


4.根据权利要求2所述的等离子体激元共振生物芯片,其特征在于,所述基底包括上部、中部和下部,所述上部、中部、下部是由相同的或不同的材料组成,优选由相同的材料组成。


5.根据权利要求4所述的等离子体激元共振生物芯片,其特征在于,所述光波导的材料至少与设置所述光波导的基底中部的材料相同,优选为PMMA聚合物材料。


6.根据权利要求1所述的等离子体激元共振生物芯片,其特征在于,所述光波导的直径为微米量级,优选100-500微米,最优选约200微米;所述光波导的高度为1000-3000微米,优选约1500微米;相邻光波导之间的距离为微米量级,优选约100-500微米,最优选约200微米。


7.根据权利要求1所述的等离子体激元共振生物芯片,其特征在于,所述光波导为柱状体,优选为圆柱体;所述光波导的顶部和底部为锥面,优选为内凹的锥面。


8.根据权利要求1所述的等离子体激元共振生物芯片,其特征在...

【专利技术属性】
技术研发人员:吴兆鹏
申请(专利权)人:科竟达生物科技有限公司
类型:发明
国别省市:中国香港;81

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1