一种锂离子电池的基于全局最优粒子滤波的寿命预测方法技术

技术编号:26343090 阅读:64 留言:0更新日期:2020-11-13 20:41
本发明专利技术公开了一种锂离子电池的基于全局优化粒子滤波的寿命预测方法,包括以下步骤:步骤1、建立双指数电池容量衰退经验模型作为电池寿命退化模型:步骤2、建立电池容量衰退过程中的状态转移方程和观测方程:步骤3、初始化粒子滤波算法:步骤4、拉马克重写操作设置;步骤5、执行重写操作:步骤6、执行变异操作;步骤7、重复迭代第7步到第8步过程,直到满足预先设定的终止条件,得到最优的种群;然后根据最优的种群基因确定锂离子电池衰退模型参数;步骤8、预测电池容量,根据第9步获得的最优电池衰退模型参数,设定预测步数L;步骤9:判断预测容量是否达到电池衰退阈值U,若达到阈值,计算循环使用寿命的预测结果。本发明专利技术在提高了智能优化粒子滤波算法的全局搜索能力,达到提高电池寿命预测估计精度的目的。

A life prediction method of lithium ion battery based on global optimal particle filter

【技术实现步骤摘要】
一种锂离子电池的基于全局最优粒子滤波的寿命预测方法
本专利技术涉及电池技术中的可靠性研究,尤其涉及一种锂离子电池的基于全局最优粒子滤波的寿命预测方法。
技术介绍
近年来,锂离子电池因其能量密度高,无记忆效应,自放电率低等多重优点获得了广泛应用。从手机、数码相机、笔记本电脑等各式便携电子产品,到电动汽车及混合动力机车,甚至航天领域的空间站、卫星、飞机等高科技系统以及国防领域的导弹、潜艇和坦克等军事装备也都将锂离子电池作为供能储能元件。而随着锂离子电池的广泛应用,其电池本身存在的健康管理、性能衰退等问题成为目前亟待解决的关键。因此,对锂离子电池剩余使用寿命的正确预测尤为重要,它可以降低系统故障发生几率,实现锂电池长期安全有效的运行。粒子滤波是一种基于蒙特卡洛模拟和递推贝叶斯估计的滤波方法。其基本原理就是通过寻找一组在状态空间中传播的随机样本,这里的样本即指“粒子”,对后验概率密度函数进行近似,以样本均值代替积分运算,从而获得状态最小方差估计的过程。当样本数量趋近于无穷大时可以逼近任何形式的概率密度分布。粒子滤波具有非参数化的特点,摆脱了解决非线性滤波问题的随机量必须满足高斯分布的制约。因此,粒子滤波能够比较精确地表达基于观测量和控制量的后验概率分布,能够获得更加精确的系统状态估计结果,从而被运用到锂离子电池的寿命预测中。然而,由于粒子滤波的性能受自身粒子退化和粒子贫化两大问题限制,极大地影响了其在锂离子电池寿命预测中的应用,导致预测结果的不精确,不利于维修决策,从而为后面进行的故障预测与健康管理带来了很多困难。为了提高粒子滤波在锂离子电池寿命预测中的性能,目前研究者尝试采用智能优化算法,如遗传算法、粒子群优化算法、蚁群算法和人工鱼群算法等,通过优化搜索并保留能够反映系统概率密度函数的粒子,以达到改善粒子分布。但是这些智能优化粒子滤波在控制粒子的多样性,以及寻优过程的全局引导能力上,尚有不足,且都增加了粒子滤波的复杂度以及计算量,影响了预测速度,其性能有待进一步提高。
技术实现思路
本专利技术是为了解决传统基于粒子滤波的锂离子电池寿命预测中粒子贫化和粒子退化问题以及智能算法优化粒子滤波带来的全局搜索能力弱、计算复杂度增大的缺陷,导致对电池寿命的预测结果准确性差的问题。现提供一种基于全局最优粒子滤波的锂离子电池寿命预测方法。一种锂离子电池的基于全局优化粒子滤波的寿命预测方法,包括以下步骤:步骤1、建立双指数电池容量衰退经验模型作为锂离子电池寿命退化模型:步骤1.1、从电池测试数据集中提取出电池容量数据作为样本数据C;步骤1.2、双指数容量衰减模型:Q=a·exp(b·k)+c·exp(d·k),其中Q为电池容量,k为循环次数,a,b,c,d是模型的未知参数。步骤1.3、设定预测起始点T,T之前的数据为已知的历史数据,从T循环开始执行预测算法,估计每个循环的电池容量,T是预测开始循环点。步骤2、建立锂离子电池容量衰退过程中的状态转移方程和观测方程:xk=[akbkckdkμσ]T,Qk+1=ak+1·exp(bk+1·(k+1))+ck+1·exp(dk+1·(k+1))+vk+1,其中,ak,bk,ck,dk为锂离子电池第k次充放电循环周期所对应的状态变量,Qk+1为第k+1次充放电循环周期所对应的电池估算容量值。Q,a,b,c,d的噪声分别为均值为μ,方差为σ,,,,的高斯白噪声。σQ;σa,σb,σc,σd的高斯白噪声分布vk+1,wa,wb,wc和wd;N(μ,σa),N(μ,σb),N(μ,σc),N(μ,σd)是相应的噪声分布函数.步骤3、初始化粒子滤波算法:步骤3.1、设定相关参数:粒子的数目N,粒子滤波模型过程中的过程噪声和观测噪声的协方差R和S,电池循环使用寿命结束的阈值U;步骤3.2、根据样本数据C,获得双指数容量衰退模型的状态变量初值a0,b0,c0,d0的分布,以其构成初始粒子集,即k=0,步骤3.3、根据转移状态密度函数对粒子进行重要性采样,获得带有权重的重要性采样预测粒子集,即其中为归一化的每个粒子的权重;步骤4、拉马克重写操作设置。步骤4.1、种群设置,把k循环周期的粒子集当作整个优化操作的第一代初始种群g为种群进化的代数,此时g=0,种群大小等于粒子数目N,每个粒子为一个染色体,记为的基因串组成为表示为其中,表示基因,就是每个粒子的每一位参数,d为参数维度,j表示染色体中基因的序号;每个粒子的权重就是每个染色体的适应度函数值;步骤4.2、将初始种群Gk进行一次调整;然后计算种群Gk中每一个染色体的适应度;步骤5、执行重写操作产生新种群G′k+1:步骤5.1、根据获得性遗传的重写概率ρ,ρ∈(0,1],随机选择两个父代染色体和且步骤5.2、比较父代染色体的适应度函数值和的适应度函数值的大小,计算基因传递百分比pt:然后根据下式计算传递的基因数目nt:nt=d×pt其中d为染色体的基因总数;步骤5.3、执行重写操作:首先,将适应度强的染色体记为保留作为k+1代染色体将适应度弱的染色体记为其次,从适应度强的染色体传递nt个基因到适应度弱的染色体传递基因的位置随机选取,形成新的染色体将作为k+1代染色体步骤5.4、重复N次步骤5.1至步骤5.3,重写操作之后产生临时的新种群步骤6、根据变异概率pm,执行变异操作,产生一次优化操作后的新种群Gk+1;步骤7、计算种群Gk+1中每一个染色体的适应度,重复迭代第7步到第8步过程,直到满足预先设定的终止条件,得到最优的种群;然后根据最优的种群基因确定锂离子电池衰退模型参数。步骤8、预测电池容量,根据第7步获得的最优电池衰退模型参数,设定预测步数L,那么k充电循环下L步预测容量为:步骤9:判断预测容量是否达到电池衰退阈值U(单位:Ah),若达到阈值,计算循环使用寿命的预测结果RUL=k+L(单位:cycle)优选地,步骤1中从电池测试数据集中提取出电池容量数据,进行预处理并剔除离群点以及精简数据后作为样本数据C。优选地,步骤6中执行变异操作过程采用均匀变异方法进行变异,变异概率为pm;之后产生一次优化操作后的新种群Gk+1。本专利技术具有以下有益效果:本专利技术在锂离子电池的寿命预测中用到的全局最优粒子滤波算法最大限度地提高了智能优化粒子滤波算法的全局搜索能力,避免了传统智能优化粒子滤波仅是结合传统遗传算法的缺陷,如陷入局部最优和后期进化缓慢、步骤繁琐等问题,本专利技术增加了粒子多样性,并且避免了传统粒子滤波算法中的粒子退化和贫化问题,达到提高电池寿命预测估计精度的目的。同时该方法最大限度地利用了粒子自身的信息,提高粒子利用率,减少了采用粒子数目和算法运行时间,且优化采样过程结构简单,控制参数少,计算复杂度较低。附图说明图1为锂离子电池的寿命预测的全局最优粒本文档来自技高网
...

【技术保护点】
1.一种锂离子电池的基于全局优化粒子滤波的寿命预测方法,包括以下步骤:/n步骤1、建立双指数电池容量衰退经验模型作为锂离子电池寿命退化模型:/n步骤1.1、从电池测试数据集中提取出电池容量数据作为样本数据C;/n步骤1.2、双指数容量衰减模型:Q=a·exp(b·k)+c·exp(d·k),其中Q为电池容量,k为循环次数,a,b,c,d是模型参数;/n步骤1.3、设定预测起始点T,T之前的数据为已知的历史数据,从T循环开始执行对步骤1.2双指数容量衰减模型的预测,估计每个循环的电池容量;/n步骤2、建立锂离子电池容量衰退过程中的状态转移方程和观测方程:/nx

【技术特征摘要】
20190718 CN 20191064922141.一种锂离子电池的基于全局优化粒子滤波的寿命预测方法,包括以下步骤:
步骤1、建立双指数电池容量衰退经验模型作为锂离子电池寿命退化模型:
步骤1.1、从电池测试数据集中提取出电池容量数据作为样本数据C;
步骤1.2、双指数容量衰减模型:Q=a·exp(b·k)+c·exp(d·k),其中Q为电池容量,k为循环次数,a,b,c,d是模型参数;
步骤1.3、设定预测起始点T,T之前的数据为已知的历史数据,从T循环开始执行对步骤1.2双指数容量衰减模型的预测,估计每个循环的电池容量;
步骤2、建立锂离子电池容量衰退过程中的状态转移方程和观测方程:
xk=[akbkckdkμσ]T,



Qk+1=ak+1·exp(bk+1·(k+1))+ck+1·exp(dk+1·(k+1))+vk+1,
其中,ak,bk,ck,dk为锂离子电池第k次充放电循环周期所对应的状态变量,Qk+1为第k+1次充放电循环周期所对应的电池估算容量值;Q,a,b,c,d的噪声分别为均值μ,方差为σ,;σQ;σa,σb,σc,σd的高斯白噪声分布vk+1,wa,wb,wc和wd;N(μ,σa),N(μ,σb),N(μ,σc),N(μ,σd)是相应的噪声分布函数;
步骤3、初始化粒子滤波算法:
步骤3.1、设定相关参数:粒子的数目N,粒子滤波模型过程中的过程噪声和观测噪声的协方差R和S,电池循环使用寿命结束的阈值U;
步骤3.2、根据样本数据C,获得双指数容量衰退模型的状态变量初值a0,b0,c0,d0的分布,以其构成初始粒子集,即k=0,
步骤3.3、根据转移状态密度函数对粒子进行重要性采样,获得带有权重的重要性采样预测粒子集,即其中为归一化的每个粒子的权重;
步骤4、拉马克重写操作设置;
步骤4.1、种群设置,把k循环周期的粒子集当作整个优化操作的第一代初始种群g为种群进化的代数,此时g=0,种群大小等于粒子数目N...

【专利技术属性】
技术研发人员:李琳李耘
申请(专利权)人:东莞理工学院
类型:发明
国别省市:广东;44

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1