600-700nm波段傅立叶变换光致发光谱方法及装置制造方法及图纸

技术编号:2622305 阅读:276 留言:0更新日期:2012-04-11 18:40
本发明专利技术公开了一种600-700nm波段傅立叶变换光致发光谱方法及装置。该装置包括具有步进扫描功能的傅立叶变换红外光谱测量系统,作为激发光源的激光器、以及连接傅立叶变换红外光谱仪中探测器与电路控制板的锁相放大器、置于样品与激光器之间光路上的斩波器,从而使连续激发光变为幅度调制激发光,并馈入锁相放大器的输入参考端来控制锁相。该方法使用上述装置进行可见/近红外波段调制光致发光谱测量,包括消除傅立叶变换红外光谱仪内部氦氖激光的干扰;消除傅立叶频率和增强可见/红外波段光致发光微弱信号的探测能力三个功能。经过对发光峰位于600-700nm附近的InGaP/AlGaInP多量子阱材料进行光致发光谱的测试。表明:本发明专利技术显著提高探测灵敏度和光谱信噪比,并具有快速、便捷的优点,特别适用于600-700nm波段半导体材料微弱光致发光特性的检测。

【技术实现步骤摘要】

本专利技术涉及可见/近红外光电材料光致发光特性测试方法及装置,具体的说,主要是一种600-700nm附近波段傅立叶变换(FTIR)光致发光谱的方法及装置。
技术介绍
基于傅立叶变换红外光谱仪的光致发光谱是一种研究红外半导体材料光电性能的先进方法,它不仅能揭示材料的禁带和带尾态等电子带结构,而且能提供杂质和深能级缺陷等信息。然而,在可见/近红外波段,由于傅立叶变换红外光谱仪内部用于光路准直和采样控制的氦氖(He-Ne)激光(波长为632.8nm)的干扰,严重影响了600-700nm附近波段范围内光致发光谱的可靠获取。而恰好在这一波段存在很重要的半导体光电材料,比如用于制备大功率半导体激光器的InGaP量子阱等。为此,有效去除内部He-Ne激光干扰就显得相当重要。
技术实现思路
针对上述问题,本专利技术的目的是提出一种600-700nm附近波段傅立叶变换(FTIR)光致发光谱的方法及装置,通过对激发光进行幅度调制,并结合相位敏感检测技术,有效去除内部He-Ne激光干扰,为研究相关材料光致发光特性提供可靠保障。本专利技术的技术构思的核心是使用具有连续和步进扫描功能的FTIR光谱仪,还包括泵浦激光、斩波器和双通道锁相放大器等组件。对于步进扫描的PL光谱测量,激光器提供的泵浦激光经过斩波器调制成正弦波,照射到样品上。斩波器的调制频率同时作为参考频率进入锁相放大器。由样品发出的PL信号经由探测器转换为电信号,馈入锁相放大器,然后由锁相放大器输出到FTIR光谱仪中的电路控制板,最后通过傅立叶变换得到PL光谱。通过选择可见分束器和硅二极管探测器,可以实现对600-700nm波段范围PL光谱的有效测量。综上所述,本专利技术的技术方案如下根据本专利技术的一种600-700nm附近波段傅立叶变换(FTIR)光致发光谱的装置,包括-激光器,其产生连续泵浦激光;-傅立叶变换红外光谱测量系统,其具有傅立叶变换红外光谱仪和与之相配合的傅立叶变换红外光谱处理的计算机,该光谱仪具有样品架,其上置放测试样品,与样品的发光信号构成光路的干涉仪部件,该部件中的动镜置于步进扫描状态,探测器以及与计算机相连接的电路控制板;-光调制装置,其包括成电路联结的锁相放大器和斩波器,该斩波器将该激光器发出的连续泵浦激光斩波形成调制激光,其入射至样品架上的样品而产生调制的光致发光信号,另外该调制激光还作为锁相放大器的参照信号馈入其参考信号输入端;该锁相放大器的信号输入端连接该探测器的输出端;而其输出端则与该电路控制板的输入端相连接。所述的锁相放大器为Standford SR830DSP型锁相放大器;所述的斩波器为Standford SR540型机械斩波器;所述的激光器为Coherent 360型氩离子激光器;所述的傅立叶变换红外谱仪为Bruker IFS 660v/S型FTIR光谱仪;以及所述的样品为所有可见、近红外材料,例如InGaP/AlGaInP多量子阱光致发光材料。根据同一专利技术构思,本专利技术的一种600-700nm波段傅立叶变换(FTIR)调制光致发光谱的方法,其步骤包括S1、通过对激发光进行幅度调制,并结合在FTIR光谱仪的探测器和电路控制板之间接入锁相放大器,进行相敏检测,消除内部准直光路的He-Ne激光对光致发光谱的干扰;S2、利用FTIR光谱仪的步进扫描功能,消除傅立叶频率,放松对外调制频率选取的苛刻限制,使可见、近红外波段调制傅立叶变换光致发光谱方法真正可行;S3、结合锁相放大器的相敏检测与FTIR连续傅立叶变换红外光致发光谱的数据处理方法,显著增强可见、近红外波段光致发光微弱信号的探测能力,有效缩短光谱采集所需时间。进一步,在步骤S1之前还有预调节步骤S0,其系将该红外光谱仪置于连续扫描状态,监控泵浦激光激发样品得到的光致发光信号,通过调整、优化与位于样品架上的相关光路,使该光谱仪监测到的信号达到极大。另外,所述的测试样品为所有可见、近红外材料,例如InGaP/AlGaInP多量子阱材料。与传统傅立叶变换光致发光谱方法相比,本专利技术的最大优点是1.结合锁相放大器和斩波器,有效消除傅立叶变换红外光谱仪内部He-Ne激光干扰;2.利用步进扫描工作模式,有效解决调制频率、动镜速率和锁相放大器采样时间常数的相互制约关系;3.可以快速、可靠地获得免干扰、高信噪比光致发光谱,有利于微弱信号的提取和指认。附图说明图1给出了600-700nm附近波段傅立叶变换光致发光谱实验装置示意图。图2为室温条件下InGaP/AlGaInP多量子阱光致发光谱比较图,(a)为利用传统方法获得,(b)为利用本专利技术提出的调制光致发光谱方法获得的光致发光谱。具体实施例方式下面根据图1-图2给出本专利技术的较好实施例,并予以详细描述,能更好地说明本专利技术的技术特征和功能特点。从图1可见,本专利技术的调制光致发光谱测量装置,包括-激光器3,其产生泵浦激光;-傅立叶变换红外光谱系统1,其上具有傅立叶变换红外光谱仪10和与其相配合的傅立叶变换红外光谱处理计算机20,该光谱仪10具有放置样品4的样品架101,接受样品4的光致发光信号的干涉仪部件102,该部件102中的动镜1026置于步进扫描状态,信号经过干涉仪部件102傅立叶变换后送入的探测器103,以及与该计算机20相连接的电路控制板104;-光调制装置2,其包括成电路联结的锁相放大器21和斩波器22,该斩波器22位于激光器3和样品4之间,将连续泵浦激光调制成调制激光入射到样品4上使其光致发光,该调制激光还作为锁相放大器21的参照信号馈入该放大器21的参考信号输入端,以及该放大器21的输入和输出端还分别连接探测器103和电路控制板104。基于FTIR光谱仪10的PL光谱测量主要由以下几个过程(1)FTIR光谱仪10记录干涉图I(δ);(2)完成对干涉图的傅立叶变换,得到光致发光谱B(σ)。I(δ)和B(σ)分别可表示为I(δ)=∫-∞+∞B(σ)cos(2πσδ)dσ,]]>B(σ)=∫-∞+∞I(δ)cos(2πσδ)dδ,---(1)]]>其中δ和σ分别表示光程差(cm)和谱能量(cm-1)。测量时,探测器103收集到的信号(Id(δ))主要包括两部分真实光致发光信号(IPL(δ))和内部He-Ne激光信号(IHe-Ne(δ)),可以表示为Id(δ)=IpL(δ)+IHe-Ne(δ),(2)其中IPL(δ)=∫-∞+∞BPL(σ)cos(2πσδ)dσ,]]>IHe-Ne(δ)=∫-∞+∞BHe-Ne(&s本文档来自技高网...

【技术保护点】
一种600-700nm波段傅立叶变换光致发光谱装置,包括:-激光器(3),其产生连续的泵浦激光;-傅立叶变换红外光谱测量系统(1),其具有傅立叶变换红外光谱仪(10)和与之相配合的傅立叶变换红外光谱处理的计算机(20),该光 谱仪(10)具有样品架(101),其上置放测试样品(4),样品(4)受泵浦激光激发后产生的信号进入光谱仪的干涉仪部件(102),该部件(102)中的动镜(1026)置于步进扫描状态,与干涉仪部件(102)、探测器(103),以及计算机(20)相连接的电路控制板(104);-光调制装置(2),其包括形成电路联结的锁相放大器(21)和斩波器(22),该斩波器(22)将激光器(3)连续发出的激发光束斩波形成调制激光,其入射至样品架(101)上的样品(4)而产生调制光致发光, 另外该调制激光光束的调制频率信号还作为锁相放大器(21)的参考信号馈入其参考信号输入端;该锁相放大器(21)的信号输入端连接该探测器(103)的输出端;而其输出端则与该电路控制板(104)的输入端相连接。

【技术特征摘要】

【专利技术属性】
技术研发人员:邵军陆卫越方禹吕翔李志锋郭少令褚君浩
申请(专利权)人:中国科学院上海技术物理研究所
类型:发明
国别省市:31[中国|上海]

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1