一种非制冷红外焦平面的盲元偏置电路制造技术

技术编号:25876727 阅读:21 留言:0更新日期:2020-10-09 21:53
本实用新型专利技术提供一种非制冷红外焦平面的盲元偏置电路,第一比较器的输出端与第一NMOS管的栅极电连接,第一比较器的负输入端和第一NMOS管的源极均与RPOLY电阻的输入端电连接,第一NMOS管的漏极与第一镜像电流电路的输入端电连接,第二比较器的输出端与第二NMOS管的栅极电连接,第二比较器的负输入端和第二NMOS管的源极均与RREF电阻的输入端电连接,第二NMOS管的漏极与第二镜像电流电路的输入端电连接,第一镜像电流电路的输出端和第二镜像电流电路的输出端均通过一个模数转换器与第三镜像电流电路的输入端电连接,第三镜像电流电路的输出端与第一PMOS管的漏极电连接,第一PMOS管的源极通过一盲元电阻接电源,第一PMOS管的漏极与第一PMOS管的栅极电连接。

【技术实现步骤摘要】
一种非制冷红外焦平面的盲元偏置电路
本技术涉及偏置电路设计,尤其涉及一种非制冷红外焦平面的盲元偏置电路。
技术介绍
传统的非制冷红外焦平面的盲元偏置电路如图1所示,图中RA为MEMS像元,与衬底热隔离。RREF为参考元,结构与RA相同,与衬底热短。RB为盲元,与衬底热短。传统结构的盲元偏置电压为GSK,多为固定电压,这种结构的缺点是,在无TEC(半导体致冷器)的情况下,RB随衬底温度变化,导致流过盲元RB和MEMS像元RA的电流随衬底变化,积分电流也会同比例变化,这就造成随衬底温度升高,响应率也会跟着升高的问题,同时衬底温度升高,带来MEMS电阻的自热效应加重,将直接影响MEMS的工作性能。
技术实现思路
本技术的目的在于克服现有技术之缺陷,提供了一种非制冷红外焦平面的盲元偏置电路,以产生随衬底变化且可调节温度系数的盲元偏置电压GSK。本技术是这样实现的:本技术提供一种非制冷红外焦平面的盲元偏置电路,包括第一NMOS管、RPOLY电阻、第一镜像电流电路、第二NMOS管、RREF电阻、第二镜像电流电路、第三镜像电流电路、正输入端接VREF的第一比较器、正输入端接VREF的第二比较器、栅极为盲元偏置电压GSK的第一PMOS管,第一比较器的输出端与第一NMOS管的栅极电连接,第一比较器的负输入端和第一NMOS管的源极均与RPOLY电阻的输入端电连接,第一NMOS管的漏极与第一镜像电流电路的输入端电连接,第二比较器的输出端与第二NMOS管的栅极电连接,第二比较器的负输入端和第二NMOS管的源极均与RREF电阻的输入端电连接,第二NMOS管的漏极与第二镜像电流电路的输入端电连接,第一镜像电流电路的输出端和第二镜像电流电路的输出端均通过一个模数转换器与第三镜像电流电路的输入端电连接,第三镜像电流电路的输出端与第一PMOS管的漏极电连接,第一PMOS管的源极通过一盲元电阻接电源,第一PMOS管的漏极与第一PMOS管的栅极电连接,RPOLY电阻的输出端和RREF电阻的输出端均接地。作为优选,所述第一镜像电流电路包括第二PMOS管和第三PMOS管,第二PMOS管的源极和第三PMOS管的源极分别通过一个盲元电阻接电源,第二PMOS管的栅极和第三PMOS管的栅极均与第一NMOS管的漏极相连,第二PMOS管的漏极与第一NMOS管的漏极相连,第三PMOS管的漏极通过模数转换器与第三镜像电流电路输入端电连接。作为优选,所述第二镜像电流电路包括第四PMOS管和第五PMOS管,第四PMOS管的漏极和第五PMOS管的漏极分别通过一个盲元电阻接电源,第四PMOS管的栅极和第五PMOS管的栅极均与第二NMOS管的漏极相连,第四PMOS管的漏极与第二NMOS管的漏极相连,第五PMOS管的漏极通过模数转换器与第三镜像电流电路输入端电连接。作为优选,所述第三镜像电流电路包括第三NMOS管和第四NMOS管,第三NMOS管的栅极、第四NMOS管的栅极以及第三NMOS管的漏极均与第三PMOS管的漏极电连接,第四NMOS管的漏极与第一PMOS管的漏极电连接,第三NMOS管和第四NMOS管的源极均接地。本技术具有以下有益效果:本技术提供的非制冷红外焦平面的盲元偏置电路可以产生随衬底变化且可调节温度系数的盲元偏置电压GSK,当其作为非制冷红外焦平面电路的输入电压时既可实现抑制衬底温度偏高时MEMS的自热效应,又可以保证探测器的响应率稳定。附图说明为了更清楚地说明本技术实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本技术的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。图1为传统的非制冷红外焦平面电路;图2为本技术实施例提供的非制冷红外焦平面的盲元偏置电路。具体实施方式下面将结合本技术实施例中的附图,对本技术实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本技术一部分实施例,而不是全部的实施例。基于本技术中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本技术保护的范围。如图2,本技术实施例提供一种非制冷红外焦平面的盲元偏置电路,包括第一NMOS管NM1、RPOLY电阻、第一镜像电流电路、第二NMOS管NM2、RREF电阻、第二镜像电流电路、第三镜像电流电路、正输入端接VREF的第一比较器U1、正输入端接VREF的第二比较器U2、栅极为盲元偏置电压GSK的第一PMOS管PM1,第一比较器U1的输出端与第一NMOS管NM1的栅极电连接,第一镜像电流电路包括第二PMOS管PM2和第三PMOS管PM3,所述第二镜像电流电路包括第四PMOS管PM4和第五PMOS管PM5,所述第三镜像电流电路包括第三NMOS管NM3和第四NMOS管NM4,第一比较器U1的负输入端和第一NMOS管NM1的源极均与RPOLY电阻的输入端电连接,第一NMOS管NM1的漏极与第一镜像电流电路的输入端电连接,RPOLY电阻的输出端接地,RPOLY为温度系数极小的POLY电阻,上支路可生成与温度无关的可调电流,当全部用上支路镜像电流产生GSK时,即可得到一个随衬底温度变化的GSK,流经图1中的MEMS像元RA的SKIM电流固定不变,这样可以抑制高温时MEMS的自热效应,且使探测器响应率不随衬底温度升高而提高;第二比较器U2的输出端与第二NMOS管NM2的栅极电连接,第二比较器U2的负输入端和第二NMOS管NM2的源极均与RREF电阻的输入端电连接,第二NMOS管NM2的漏极与第二镜像电流电路的输入端电连接,RREF电阻的输出端接地,RREF为与衬底热短的参考元电阻,下支路可生成与RREF温度系数成反比的可调电流,当全部用下支路镜像电流产生GSK时,由于RREF和盲元电阻RB均热短且温度系数相同,即可得到一个固定的GSK,SKIM电流随衬底温度变化,与传统电路相同;第一镜像电流电路的输出端和第二镜像电流电路的输出端均通过一个模数转换器DAC与第三镜像电流电路的输入端电连接,在本实施例中采用8位的DAC,第三镜像电流电路的输出端与第一PMOS管PM1的漏极电连接,第一PMOS管PM1的源极通过一盲元电阻RB接电源,第一PMOS管PM1的漏极与第一PMOS管PM1的栅极电连接,由于MEMS的温度系数的绝对值会随着温度升高而减小,全部用上支路镜像电流产生GSK时,会造成响应率随温度升高而减小,本电路可以自由配比上下电流的比例,既实现抑制衬底温度偏高时MEMS的自热效应,又可以保证探测器的响应率稳定。为了抑制无TEC情况下,随着衬底温度升高带来的MEMS电阻的自热效应加重的问题,同时为了使探测器随衬底温度变化响应率稳定,本技术提供了一种新型的非制冷红外焦平面的盲元偏置电路,本电路可以产生随衬底变化且可调节温度系数的盲元偏置电压GSK,专利技术电路如图2所示,本文档来自技高网...

【技术保护点】
1.一种非制冷红外焦平面的盲元偏置电路,其特征在于:包括第一NMOS管、RPOLY电阻、第一镜像电流电路、第二NMOS管、RREF电阻、第二镜像电流电路、第三镜像电流电路、正输入端接VREF的第一比较器、正输入端接VREF的第二比较器、栅极为盲元偏置电压GSK的第一PMOS管,第一比较器的输出端与第一NMOS管的栅极电连接,第一比较器的负输入端和第一NMOS管的源极均与RPOLY电阻的输入端电连接,第一NMOS管的漏极与第一镜像电流电路的输入端电连接,第二比较器的输出端与第二NMOS管的栅极电连接,第二比较器的负输入端和第二NMOS管的源极均与RREF电阻的输入端电连接,第二NMOS管的漏极与第二镜像电流电路的输入端电连接,第一镜像电流电路的输出端和第二镜像电流电路的输出端均通过一个模数转换器与第三镜像电流电路的输入端电连接,第三镜像电流电路的输出端与第一PMOS管的漏极电连接,第一PMOS管的源极通过一盲元电阻接电源,第一PMOS管的漏极与第一PMOS管的栅极电连接,RPOLY电阻的输出端和RREF电阻的输出端均接地。/n

【技术特征摘要】
1.一种非制冷红外焦平面的盲元偏置电路,其特征在于:包括第一NMOS管、RPOLY电阻、第一镜像电流电路、第二NMOS管、RREF电阻、第二镜像电流电路、第三镜像电流电路、正输入端接VREF的第一比较器、正输入端接VREF的第二比较器、栅极为盲元偏置电压GSK的第一PMOS管,第一比较器的输出端与第一NMOS管的栅极电连接,第一比较器的负输入端和第一NMOS管的源极均与RPOLY电阻的输入端电连接,第一NMOS管的漏极与第一镜像电流电路的输入端电连接,第二比较器的输出端与第二NMOS管的栅极电连接,第二比较器的负输入端和第二NMOS管的源极均与RREF电阻的输入端电连接,第二NMOS管的漏极与第二镜像电流电路的输入端电连接,第一镜像电流电路的输出端和第二镜像电流电路的输出端均通过一个模数转换器与第三镜像电流电路的输入端电连接,第三镜像电流电路的输出端与第一PMOS管的漏极电连接,第一PMOS管的源极通过一盲元电阻接电源,第一PMOS管的漏极与第一PMOS管的栅极电连接,RPOLY电阻的输出端和RREF电阻的输出端均接地。


2.如权利要求1所述的非制冷红外焦平面的盲元偏置电路,其特征在于:所述第一镜像电...

【专利技术属性】
技术研发人员:李凯黄晟
申请(专利权)人:武汉微智芯科技有限公司
类型:新型
国别省市:湖北;42

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1