一种液体自支撑高速通道压裂液及实验方法技术

技术编号:25793573 阅读:38 留言:0更新日期:2020-09-29 18:26
本发明专利技术提供一种液体自支撑高速通道压裂液及实验方法,所述压裂液中A液和B液的质量比是1:3~19;所述A液包括树脂、固化剂和悬浮分散剂;所述B液包括常规压裂液、密度调节剂、悬浮分散剂,A液悬浮分散在B液中。所述液体自支撑压裂液无需固相支撑剂,改变现有常规压裂方式,节省了固相支撑剂的成本,减少施工工艺,避免了固相支撑剂带来的砂堵风险。能形成厘米级固化颗粒,抗压强度高,避免了传统低密度支撑剂容易被压实的缺陷。固相体系A液占比较少,可缩减压裂成本,获得经济效益。本发明专利技术所述液体自支撑压裂液形成的均匀悬浮分散的厘米级固体颗粒,能形成高导流能力渗流通道,降低渗流阻力,可扩大裂缝控制面积,提高产量。

【技术实现步骤摘要】
一种液体自支撑高速通道压裂液及实验方法
本专利技术属于石油工业油气田开发
,涉及一种液体自支撑技术实现高速通道压裂的压裂液及实验方法。技术背景低渗、特低渗、致密油气藏、页岩气藏具有低孔、低渗、低产能的特性,仅仅依靠常规开发方式难以获得工业油气流,针对低渗透储层的特性,目前常用的开发方式主要为水力压裂开发方式,通过水力压裂形成高导流能力的裂缝,从而改变储层渗流能力,提高泄油面积,达到增产效果。水力压裂开发技术均需要注入携砂液,通过携砂液携带的固体支撑剂起到支撑裂缝的作用,支撑剂用量大、成本高,且均匀铺置的支撑剂导流能力仅仅依靠颗粒与颗粒之间的孔隙提供,导流能力有限。斯伦贝谢公司提出通道压裂技术(高速通道压裂新技术,油田新技术,2011年秋季刊,23卷,第3期),通过支撑剂团形成不连续支撑剂团充填层。不连续支撑剂团,相当于大颗粒团,大颗粒团与团之间形成离散的高速通道网络,从而形成高速渗流通道,该技术可实现较高的导流能力。但是该技术仍然需要向地层注入固体支撑剂,且注入工艺复杂,施工成本高。此外注入固体支撑剂施工过程易出现砂堵风险,砂堵一旦发生,轻者需冲砂、洗井作业,影响压裂施工进程,重者造成井筒报废,引起千万甚至上亿经济损失。针对常规压裂技术及通道压裂技术存在的问题,国内有部分学者提出相变压裂液技术,所提到的相变压裂液配方复杂、成分多,中国专利文献CN105971579A(CN201610531410.8)提供一种相变水力压裂工艺,所提到的相变材料用量达30%~70%,相变压裂液用量大,势必造成成本高,难以获得更高的经济效益。此外,赵立强等公开一种新型自支撑压裂液体系实验研究(油气藏评价与开发,2020,10(2):121-127.),所述相变压裂液最终形成的固体颗粒目数在20~70目之间,粒径与常规支撑剂无异,该种粒径的支撑剂铺置后,仍然是通过颗粒与颗粒间的孔隙提供导流能力,无法获得高导流能力,且相变压裂液用量大,成本高。
技术实现思路
本专利技术为了解决现有技术中存在的相变压裂液用量大、成本高,支撑剂粒径小,导流能力低的问题,提供一种液体自支撑高速通道压裂液及实验方法。该种液体自支撑压裂液无需固相支撑剂,将压裂液注入裂缝后,压裂液可固化体系可固化形成厘米级圆球状颗粒,且厘米级颗粒均匀悬浮在压裂液中,固化后,形成的厘米级颗粒均匀填充在裂缝中,形成厘米级高速渗流通道,获得高导流能力,此外,液体可固化液用量少,成本低,压裂施工过程保持液态,流动性高,施工简单,不存在砂堵风险。为了实现上述目的,本专利技术采用下述技术方案:一种液体自支撑高速通道压裂液,由A液和B液组成,A液和B液的质量比是1:3~19;所述A液包括树脂、固化剂和悬浮分散剂;所述B液包括常规压裂液、密度调节剂、悬浮分散剂,A液悬浮分散在B液中。优选的,A液在B液中形成水包油型悬浮液;A液在B液中形成厘米级液体颗粒。优选的,所述A液中包括100份树脂,20~40份固化剂,0.1~0.5份悬浮分散剂;B液中包括100份常规压裂液,4~40份密度调节剂,0.1~0.5份悬浮分散剂。优选的,所述A液中还包括稀释剂;所述B液中还包括交联剂和/或表面活性剂。进一步优选的,所述A液中包括100份树脂,0~20份稀释剂,20~40份固化剂,0.1~0.5份悬浮分散剂;B液中包括100份常规压裂液,0~1份交联剂,4~40份密度调节剂,0~4份表面活性剂,0.1~0.5份悬浮分散剂。优选的,所述A液中的树脂为环氧树脂,包括双酚A型环氧树脂E-44,双酚A型环氧树脂E-51、双酚F型环氧树脂,多酚型缩水甘油醚环氧树脂中的一种或多种。环氧树脂为形成厘米级颗粒的主要材料。优选的,所述A液中的稀释剂包括乙醇、丙酮、甲乙酮、环己酮、甲苯、二甲苯、正丁醇、正丁基缩水甘油醚、苯基缩水甘油醚、环氧丙烷邻甲苯基醚中的一种。稀释剂的主要作用为:降低环氧树脂粘度、提高流动性,促进树脂液分散。优选的,所述A液中的固化剂包括三亚乙基四胺,三乙烯四胺,三亚乙基三胺,邻苯二甲酸酐,顺丁烯二酸酐,咪唑类固化剂中的一种。固化剂的主要作用为使环氧树脂固化。优选的,所述A液和B液中的悬浮分散剂为亲水性纤维材料。所述亲水性纤维材料为低密度纤维,密度为0.95~1.1g/cm3,碱含量小于0.8%,抗拉强度大于600MPa。A液中所用亲水性纤维材料直径10~20μm,长度1~5mm。B液中所用亲水性纤维材料的直径为10~20μm,长度5~12mm。所述亲水性纤维材料为在市面购置的纤维材料,包括改性聚丙烯纤维、聚乙烯醇纤维中的一种或两种,其中聚丙烯纤维需进行表面改性处理后得到亲水性纤维材料。纤维改性方法为常规方法,改性方法参考文献:刘中伟,张炉青,仇凯,等.聚丙烯纤维的表面改性研究[J].山东化工,2015,044(006):31-33,38。在A液与B液的混合过程中,喷射过程会产生微小液滴,A液中的悬浮分散剂对各小液滴之间具有一定的牵扯作用,从而能够促进小液滴聚并,能促进树脂液成团成簇状存在,保证厘米级大颗粒形成;并能防止固化颗粒、压裂过程中产生的碎屑回流等。B液中悬浮分散剂有利于提高A液喷射入B液后形成的水包油液体颗粒的悬浮性,也有利于在注入过程中厘米级固体颗粒分散。B液中的纤维通过与A液液体颗粒的物理碰撞约束颗粒的运动,该约束作用受到纤维取向、纤维浓度和长度的影响。在A液液体颗粒固化形成厘米级固体颗粒的过程中,A液液体颗粒与B液中的纤维不断碰撞,碰撞使得纤维发生运动,纤维之间相互作用增强、接触数量增多,多根纤维相互接触形成网状结构,大大降低A液液体颗粒的运动速度。将A液颗粒外围受到的常规压裂液的曳力,传递到内部,提高了A液厘米级颗粒的稳定性。如果A液中悬浮分散剂含量过少,不利于A液大颗粒的形成;若纤维量过多,则A液流动性变差,难以将A液喷射进B液中。如果B液中纤维量过少,则起不到悬浮分散作用,A液大颗粒易沉降,过多时,成本升高,且施工压力升高,甚至堵塞炮眼。配制过程不能将A液、B液同时混合配制因为,A液、B液性质不同,作用不同,A液属于油性,B液属于水性,A喷必须射进B中,如使用搅拌方法使两者混合,则A液无法在B液中形成较大液体颗粒,不具有高速通道压裂效果。优选的,所述常规压裂液为胍胶压裂液、滑溜水压裂液、乳液压裂液、聚丙烯酰胺溶液、黄原胶溶液。主要为增稠剂,提高流体粘度,减缓颗粒沉降速度。优选的,B液中所述的交联剂为胍胶压裂液常用交联剂,如硼砂、有机硼、有机锆等。交联剂主要为了使胍胶压裂液增粘,控制压裂液粘度,使用其他压裂液时无需加入交联剂。优选的,B液中所述密度调节剂为氯化钠、氯化钾、溴化钠、溴化钾、溴化锌、溴化钙中的一种或几种,用量根据所需压裂液密度调节。密度调节剂主要作用为了调节压裂液密度,提高A液固化颗粒悬浮性,提高可携带性,有利于颗粒圆度、球度的提高。所述表面活性剂为油田常用表面活性剂,添加表面活性剂能够进一步提高厘米级固体颗粒的分散性。B液中油本文档来自技高网
...

【技术保护点】
1.一种液体自支撑高速通道压裂液,其特征在于,包括A液和B液,A液和B液的质量比是1:3~19;所述A液包括树脂、固化剂和悬浮分散剂;所述B液包括常规压裂液、密度调节剂、悬浮分散剂,A液悬浮分散在B液中。/n

【技术特征摘要】
1.一种液体自支撑高速通道压裂液,其特征在于,包括A液和B液,A液和B液的质量比是1:3~19;所述A液包括树脂、固化剂和悬浮分散剂;所述B液包括常规压裂液、密度调节剂、悬浮分散剂,A液悬浮分散在B液中。


2.根据权利要求1所述的压裂液,其特征在于,所述A液中包括100份树脂,20~40份固化剂,0.1~0.5份悬浮分散剂;B液中包括100份常规压裂液,4~40份密度调节剂,0.1~0.5份悬浮分散剂。


3.根据权利要求1或2所述的压裂液,其特征在于,所述A液中还包括稀释剂;所述B液中还包括交联剂和/或表面活性剂。


4.根据权利要求3所述的压裂液,其特征在于,所述A液中包括100份树脂,0~20份稀释剂,20~40份固化剂,0.1~0.5份悬浮分散剂;B液中包括100份常规压裂液,0~1份交联剂,4~40份密度调节剂,0~4份表面活性剂,0.1~0.5份悬浮分散剂。


5.根据权利要求1所述的压裂液,其特征在于,A液中所述树脂为环氧树脂,包括双酚A型环氧树脂E-44、双酚A型环氧树脂E-51、双酚F型环氧树脂、多酚型缩水甘油醚环氧树脂中的一种或多种;A液中所述稀释剂包括乙醇、丙酮、甲乙酮、环己酮、甲苯、二甲苯、正丁醇、正丁基缩水甘油醚、苯基缩水甘油醚、环氧丙烷邻甲苯基醚中的一种;A液中所述固化剂包括三亚乙基四胺、三乙烯四胺、三亚乙基三胺、邻苯二甲酸酐、顺丁烯二酸酐、咪唑类固化剂中的一种。


6.根据权利要求1所述的压裂液,其特征在于,所述A液和B液中的悬浮分散剂为亲水性纤维材料。优选的,A液中所用亲水性纤维材料直径为10~20μm,长度为1~5mm;B液中所用亲水性纤维材料的直径为10~20μm,长度为5~12mm。进一步优选的,所述亲水性纤维材料为改性聚丙烯纤维、聚乙烯醇纤维中的一种或两种。


7.根据权利要求...

【专利技术属性】
技术研发人员:刘化普温庆志史胜龙房堃张东晓
申请(专利权)人:青岛大地新能源技术研究院
类型:发明
国别省市:山东;37

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1