一种基于S矩阵狭缝阵列的推扫式高光谱成像系统及方法技术方案

技术编号:25518286 阅读:64 留言:0更新日期:2020-09-04 17:09
本发明专利技术公开了一种基于S矩阵狭缝阵列的推扫式高光谱成像系统及方法,包括主望远镜、视场光阑、S矩阵狭缝阵列、高精度电控位移台、光谱仪组件、视场补偿镜以及数据处理模块。将S矩阵狭缝阵列固定在高精度电控位移台,放置于主望远镜的一次焦面,使用视场光阑控制编码宽度,精确移动实现对面视场三维光谱图像信号的全采样,使用视场补偿镜消除编码过程中的运动模糊,通过数据处理实现空谱三维数据立方体的获取。本发明专利技术作为一种典型的计算成像方法,不存在信息丢失的问题,并且具有高通量的特点,特别适用于弱光下或者受限于积分时间的快速曝光成像场景,可搭载于卫星、飞机等具有稳定运动特性的平台开展高光谱遥感应用。

【技术实现步骤摘要】
一种基于S矩阵狭缝阵列的推扫式高光谱成像系统及方法
:本专利技术公开一种在弱光条件下短曝光、高帧频的推扫式高光谱成像技术方案,采用计算成像方法,利用S矩阵狭缝阵列实现空间面视场三维图谱的全周期无损采样,使用补偿镜消除编码过程中的运动模糊,后经计算重构得到高光谱三维图谱信息。系统具备高通量的特点,特别适合于弱光照条件下高灵敏度高光谱成像高灵敏度探测应用。
技术介绍
:高光谱成像技术在地质资源勘探、大气环境保护、现代农业生产等多个领域有着巨大的使用价值。在航空航天高光谱成像领域其成像体制一般分摇扫式、推扫式和凝视型三种,目前基于推扫成像体制的色散型高光谱成像是较为主流的技术方案。这种技术由二维面阵探测器和一维平台移动共同实现目标三维图谱信息的获取,二维面阵探测器单次曝光获取目标场景空间一维(线视场)和光谱一维的二维信息,空间另外一维信息则通过飞机或者卫星的移动实现。在推扫式成像光谱系统中,空间分辨率由两方面决定,竖直方向由探测器像元大小决定,水平方向由狭缝宽度决定,若需得到高空间分辨率的图像,就要减小狭缝宽度,而宽度的缩小会导致系统光通量不足,从而影响系统信噪比;另一方面,太阳光谱的能量分布在可见光和短波波段存在较大差异,相比较可见光650nm附近能量,波长大于2000nm的短波波段光谱能量比其降低约十倍。传统方法通过增加积分时间的方法解决光通量的不足的问题,这导致在较大的积分时间下,帧频受到限制。针对短波红外推扫式高光谱成像系统光通量不足的问题,特别是2000nm以后信噪比难以提升问题,本专利技术提出一种基于计算成像的方法,使用连续变换编码采样的S矩阵阵列狭缝代替传统方法的单狭缝,实现对面视场三维图谱信息的同时曝光,从而达到提高光通量,增加成像信噪比的目的,使用视场补偿镜实现变换编码过程中的运动补偿,实现信息无损的同时能够高信噪比成像。
技术实现思路
:本专利技术提供一种可实现弱光照条件下的高灵敏度高光谱成像方法,利用S矩阵狭缝阵列混合曝光实现高通量,借助称重测量原理实现对噪声的抑制,是一种实现在弱信号条件下高信噪比光谱成像有效的技术手段。系统包括望远镜1、S矩阵狭缝阵列2、视场光阑3、高精度电控位移台4、光谱仪组件5、视场补偿镜6以及数据处理模块7。S矩阵狭缝阵列2固定在高精度电控位移台4上,两者一起放置于望远镜1后方的焦面处,由高精度电控位移台4控制S矩阵狭缝阵列2的水平移动;高精度电控位移台4的移动方向与光谱仪组件5色散方向严格平行,其每次步进距离为一个狭缝的宽度,经过N次步进,组合形成S矩阵;在S矩阵狭缝阵列2后方放置视场光阑3,并通过调整保证其在尽可能靠近望远镜1的焦面,S矩阵狭缝阵列2所在平面和视场光阑3所在平面平行;光谱仪组件5放置于视场光阑3后方,通过视场光阑3的光精细分光并采集空谱混叠数据;望远镜1前加视场补偿镜6做视场补偿消除运动模糊;视场补偿镜6的运动方式为步进模式,步进速度由平台移动速度和编码阶数共同决定;数据处理模块7将采集到的空谱混叠数据做解码运算,完成重构过程,获得三维光场信号。所述S矩阵为一种由二次余项式规则生成的满秩矩阵,整个矩阵由0、1组成,其特点在于S矩阵的任一行sn都是由矩阵首行s1循环移位获得。这里假设使用的矩阵为N阶S矩阵,编码板由一组狭缝阵列组成,每条狭缝宽度相同,并根据S矩阵首行中“1”的位置排列在编码板上。为了实现平移后的编码效果,在编码板上无间隔排列两个相同的狭缝阵列,所述S矩阵狭缝阵列2替换掉原单狭缝,并使用光学矫正的方法,微调S矩阵狭缝阵列2以保证其所在平面与望远镜头1的焦面在同一平面。进一步的,所述视场光阑3的作用是保证在S矩阵狭缝阵列2的移动过程中,只有宽度为(N×单位狭缝宽度)内的狭缝参与编码。阵列狭缝的作用实际上是一种光的空间调制,借助的是数学中的称重测量原理,即多次组合测量采集,最终解码无丢失地恢复全部信息。经过空间调制的多路光信号进入光谱仪组件5,在探测器上形成空间与光谱混和信号,由光谱仪组件5中的探测器采集信号传入数据处理模块。所以在采集的过程中,应保证只有参与编码(视场光阑3内)的信号通过分光系统,其他信号都是系统引入的噪声,故采样编码板后放置光阑的方法,限制噪声光信号进入光谱成像系统。理论上光阑应放置与编码板同一位置,但是同一位置放置两个器件是不可能的,故视场光阑3应尽量靠近S矩阵编码阵列2,以最大程度减小误差。进一步的,所述视场补偿镜6用于系统的运动补偿。使用S矩阵编码阵列高光谱成像方案,每个测量周期为N次曝光时间。N次曝光需要在镜头前加视场补偿镜6做运动补偿,以保证在曝光时间内目标不变。进一步的,所述数据处理模块7将采集到的数据重新计算,恢复目标的三维高光谱数据立方体。具体的,探测器单一像素采集到的是空间与光谱混叠的信息,因S矩阵为满秩矩阵,故能保证经过N次采样,空谱信息将得到全采样。假设信号为Q,Q在系统中代表不同空间,不同谱间的光谱信号,代表编码值,则其中,W={w1,w2,w3,…,wn}即是探测器上的混叠信号,可表示为:W=S*Q由S编码矩阵性质可知,矩阵满足可逆性质,所以可由矩阵计算原始信号Q=S-1*W同时,使用S矩阵可有效的抑制噪声,假设信号的噪声为N={e1,e2,e3,…,en},方差为ε=σ2,则此时若使用从传统成像方式进行信号采集,则信噪比为:在称重测量实验中,信号方差会减小为:这里S是n×n的满秩矩阵,故使用编码狭缝光谱成像,信噪比为:实验使用编码矩阵为S19*19,计算得:这表明当矩阵大小为19×19时,信噪比提升如下:由此证明使用S矩阵狭缝阵列实现弱信号高光谱成像是一种有效的高信噪比成像方式。本方案在现有推扫式高光谱成像的基础上,使用S矩阵狭缝阵列代替单狭缝,使用视场补偿镜做运动补偿,通过连续变换编码实现全采样,作为一种典型的计算成像方法,不存在信息丢失的问题,并且具有高通量的特点,特别适用于弱光下或者受限于积分时间的快速曝光成像场景。可搭载于卫星、飞机等具有稳定运动特性的平台开展高光谱遥感应用。附图说明:图1基于S矩阵狭缝的高光谱成像系统原理框图。图2视场补偿镜配合运动补偿原理图。图3编码板平移实现S矩阵编码效果示意图(以N=19为例)。图4方法实施设计的高分辨率高通量短波红外高光谱成像系统。具体实施方式:上述说明仅作为本专利技术技术方案的概述,为了能够更清楚地了解本方案的技术手段,并可按照说明书的叙述加以实施,下文给出适用于本方案的一个具体实例的详细说明。根据
技术实现思路
,本实例构建了一套基于S矩阵阵列狭缝的高分辨率短波红外高光谱成像系统,该仪器的主要技术指标如下:光谱范围:0.9~2.5μm;光谱分辨率:20nm;谱段数:80;空间分辨率:8.7m@500Km;视场角:±0.46°×±0.192°其中各个部分的具体参数本文档来自技高网
...

【技术保护点】
1.一种基于S矩阵狭缝阵列的推扫式高光谱成像系统,包括望远镜(1)、S矩阵狭缝阵列(2)、视场光阑(3)、高精度电控位移台(4)、光谱仪组件(5)、视场补偿镜(6)以及数据处理模块(7),其特征在于:/n所述S矩阵狭缝阵列(2)放置于望远镜(1)的焦面位置,固定在高精度电控位移台(4)上,由高精度电控位移台(4)的带动S矩阵狭缝阵列(2)的水平移动;在S矩阵狭缝阵列(2)与光谱仪组件(5)之间放置视场光阑(3),并靠近S矩阵狭缝阵列(2);光谱仪组件(5)放置于视场光阑(3)后方,精细分光并采集空谱混叠数据;望远镜(1)前加视场补偿镜(6)实现视场补偿消除运动模糊,视场补偿镜(6)的运动方式为步进模式,步进速度由平台移动速度和编码阶数共同决定;数据处理模块(7)将采集到的空谱混叠数据做解码运算,完成重构过程,获得三维光场信号。/n

【技术特征摘要】
1.一种基于S矩阵狭缝阵列的推扫式高光谱成像系统,包括望远镜(1)、S矩阵狭缝阵列(2)、视场光阑(3)、高精度电控位移台(4)、光谱仪组件(5)、视场补偿镜(6)以及数据处理模块(7),其特征在于:
所述S矩阵狭缝阵列(2)放置于望远镜(1)的焦面位置,固定在高精度电控位移台(4)上,由高精度电控位移台(4)的带动S矩阵狭缝阵列(2)的水平移动;在S矩阵狭缝阵列(2)与光谱仪组件(5)之间放置视场光阑(3),并靠近S矩阵狭缝阵列(2);光谱仪组件(5)放置于视场光阑(3)后方,精细分光并采集空谱混叠数据;望远镜(1)前加视场补偿镜(6)实现视场补偿消除运动模糊,视场补偿镜(6)的运动方式为步进模式,步进速度由平台移动速度和编码阶数共同决定;数据处理模块(7)将采集到的空谱混叠数据做解码运算,完成重构过程,获得三维光场信号。


2.根据权利要求1所述的一种基于S矩阵狭缝阵列的推扫式高光谱成像系统,其特征在于:
所述的S矩阵狭缝阵列(2)为一种由S矩阵生成的狭缝编码板,满足循环编码性质;所述编码S矩阵根据二次余数法的生成,S矩阵狭缝阵列(2)的狭缝排列顺序由矩阵首行确定,并连续、无间隔排列两个,通过S矩阵狭缝阵列(2)的平移实现二维编码效果。


3.根据权利要求1所述的一种基于S矩阵狭缝阵列的推扫式高光谱成像系统,其特征在于:
所述视场光阑(3)宽度由编码矩阵的阶数决定,即光阑宽度=矩阵阶数×狭缝宽度。

...

【专利技术属性】
技术研发人员:李春来唐国良刘世界徐睿陈厚瑞谢佳楠徐艳吴兵王建宇
申请(专利权)人:中国科学院上海技术物理研究所
类型:发明
国别省市:上海;31

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1