基于多尺度小波特征的机械通气无效吸气努力识别方法技术

技术编号:25346688 阅读:29 留言:0更新日期:2020-08-21 17:06
一种基于多尺度小波特征的机械通气无效吸气努力识别方法,包括以下步骤:a读取呼吸波形数据,对其进行预处理,首先通过寻找流速波形第一个过零点来确定呼气开始点,并认为该点到呼气结束为该次呼吸的呼气相,然后通过去除呼气相波形中线性趋势来消除数据偏移对后期计算的影响;b通过离散小波变换对呼气相流速波形进行N层分解;c对各层小波系数进行特征提取;d利用序列前向选择算法选择最佳特征;e应用支持向量机分类器对最佳特征进行分类,进而得到人机不同步分类结果。本发明专利技术可以用于检测人机不同步中的无效吸气努力,可提示医护人员评估呼吸机与病人协同工作的情况。

【技术实现步骤摘要】
基于多尺度小波特征的机械通气无效吸气努力识别方法
本专利技术涉及一种机械通气无效吸气努力识别方法,能够结合多尺度小波特征对机械通气中病人的无效吸气努力进行检测,可提示医护人员评估呼吸机与病人协同工作的情况。
技术介绍
在重症监护室(IntensiveCareUnit,ICU)中,机械通气(MechanicalVentilation,MV)是急性呼吸衰竭患者的重要生命支持手段。但是当患者的呼吸需求与呼吸机设置参数不匹配时,易造成人机不同步,其与一系列不良的临床结果相关。常见的人机不同步类型包括无效吸气努力、双触发、周期过短、周期过长等。本专利技术主要针对无效吸气努力这一类型进行检测。无效吸气努力指的是患者在吸气努力后未触发呼吸机进行送气,在呼吸波形上主要表现为呼气相流速中有突起的同时伴随压力波形有凹陷。目前最常用的人机不同步检测方式是在床边观察和评估呼吸机波形,但是这需要花费大量的医护人员资源。另外有文献报道可以通过在流速呼气相寻找极大值,然后在极大值到呼气结束点之间寻找最小值,计算极大值和最小值之间的差值,并设定阈值,当差值大于阈值时,认为该次呼吸是无效吸气努力。该方法存在一些缺陷,比如:最佳阈值的设置无法适应实际数据的多样性;当病人存在咳嗽或者吸痰等行为导致产生波形噪声时,该方法容易误判。因此,需要设计一种自动识别无效吸气努力的方法。
技术实现思路
为了克服噪声的存在以及最佳阈值设定等问题,本专利技术提出了一种基于多尺度小波特征的机械通气无效吸气努力识别方法,可以用于检测人机不同步中的无效吸气努力,为医护人员进行呼吸治疗提供参考。本专利技术解决其技术问题所采用的技术方案是:一种基于多尺度小波特征的机械通气无效吸气努力识别方法,包括以下步骤:a读取呼吸波形数据,对其进行预处理,首先通过寻找流速波形第一个过零点来确定呼气开始点,并认为该点到呼气结束为该次呼吸的呼气相,选取呼气相作为分析对象;然后通过去除呼气相波形中线性趋势来消除数据偏移对后期计算的影响;b通过离散小波变换对呼气相流速波形进行N层分解;c对各层小波系数进行特征提取,包括模糊熵、近似熵、样本熵、方差、平均绝对误差、四分位差、短时标准偏差、长时标准偏差以及短时标准偏差/长时标准偏差;d利用序列前向选择算法选择最佳特征;e应用支持向量机分类器基于最佳特征进行分类,进而得到人机不同步分类结果。进一步,所述步骤b中,选用‘db5’小波基函数对呼吸流速波形进行分解得到若干个细节信号和近似信号。这里小波基函数的选择并不局限于‘db5’,可根据实际情况更改。另外分解层数N的选择也是比较灵活的,经验上一般取5-8之间,但要注意若采样点个数为M,则最大分解层数应满足以下条件:Nmax≤l0g2M其中Nmax为最大分解层数,M为采样点个数。本专利技术选择分解层数N为6。小波变换(wavelettransform,WT)是一种工具,能够将信号分割成不同频率的成分,然后再用分解的方法去研究对应尺度的成分,它能较好地反映信号的时频域变化,连续信号x(t)的小波变换定义如下:其中a和b分别为尺度因子(scale)和平移因子(translation),尺度因子控制小波函数的伸缩,与频率成反比,平移因子控制小波函数的平移,对应于时间;因为输入信号为经过采样处理的离散信号,通常使用离散小波变换(Discretewavelettransform,DWT):离散小波变换实质是对尺度因子和平移因子进行离散化。所述步骤c中,共提取了9种特征,接下来会对这9种特征的物理意义分别做出解释。模糊熵和近似熵都用于衡量信号的不规则性。近似熵是一种用于量化时间序列波动的规律性和不可预测性的非线性动力学参数,它用一个非负数来表示一个时间序列的复杂性,反映了时间序列中新信息发生的可能性,越复杂的时间序列对应的近似熵越大。模糊熵衡量的也是不规则事件产生的概率大小,测度值越大,不规则事件产生的概率越大,即序列复杂度越大。方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量,统计中是指每个样本值与全体样本值的平均数之差的平方值的平均数。平均绝对误差是所有单个值与算术平均值的偏差的绝对值的平均,平均绝对误差可以避免误差相互抵消的问题,因而可以准确反映实际每个值误差的大小。四分位差是上四分位数与下四分位数的差,反映了50%数据的离散程度。短时标准偏差和长时标准偏差都是庞加莱图中的计算结果,前者反映了相邻两个采样点之间的差异程度,后者则反映了整个呼吸波形中的总体变异度。所述步骤d中,序列前向选择算法包括以下步骤:d1:所有的特征X1、X2、X2……XN都被单独应用到分类器中,以选择效果最佳的一种特征,假定最佳特征为Xi;d2:将效果最佳的特征Xi分别与剩下的特征X1、X2……Xi-1、Xi+1……XN一一结合,选取效果最佳的一组特征,假定最佳组合为[Xi,Xj];d3:将[Xi,Xj]分别与剩下的特征X1、X2……Xi-1、Xi+1……Xj-1、Xj+1……XN一一结合,选取效果最佳的一组特征;d4:重复执行步骤d3,直到效果出现下降。本专利技术的有益效果主要表现在:利用小波变换对呼吸波形进行尺度分解,和波形形态特征相结合,成功克服了高频噪声的干扰以及阈值设置的问题,为实现自动化检测无效吸气努力提供了基础。附图说明图1为本专利技术的流程示意图。图2为对原始波形进行预处理之后的示意图,其中,(a)是原始呼气相波形图,(b)是经过预处理之后的波形图。图3为小波分解示意图。图4为对呼吸波形进行小波分解的示意图。具体实施方式下面结合附图对本专利技术作进一步描述。参照图1~图4,一种基于多尺度小波特征的机械通气无效吸气努力识别方法,包括以下步骤:a读取呼吸波形数据,对其进行预处理。首先通过寻找流速波形第一个过零点来确定呼气开始点,并认为该点到呼气结束为该次呼吸的呼气相。然后通过去除呼气相波形中线性趋势来消除数据偏移对后期计算的影响;b通过离散小波变换对呼气相流速波形进行N层分解;c对各层小波系数进行特征提取,包括模糊熵、近似熵、样本熵以及方差、平均绝对误差、四分位差、短时标准偏差、长时标准偏差以及短时标准偏差/长时标准偏差;d利用序列前向选择算法选择最佳特征;e应用支持向量机分类器对最佳特征进行分类,进而得到人机不同步分类结果。进一步,所述步骤b中,选用‘db5’小波基函数对呼吸流速波形进行分解得到若干个细节信号和近似信号。这里小波基函数的选择并不局限于‘db5’,可根据实际情况更改。另外分解层数N的选择也是比较灵活的,经验上一般取5-8之间,但要注意若采样点个数为M,则最大分解层数应满足以下条件:Nmax≤log2M其中Nmax为最大分解层数,M为采样点个数。本专利技术选择分解层数N为6。小波变换(w本文档来自技高网...

【技术保护点】
1.基于多尺度小波特征的机械通气无效吸气努力识别方法,其特征在于,所述方法包括以下步骤:/na读取呼吸波形数据,对其进行预处理,首先通过寻找流速波形第一个过零点来确定呼气开始点,并认为该点到呼气结束为该次呼吸的呼气相,选取呼气相作为分析对象;然后通过去除呼气相波形中线性趋势来消除数据偏移对后期计算的影响;/nb通过离散小波变换对呼气相流速波形进行N层分解;/nc对各层小波系数进行特征提取,包括模糊熵、近似熵、样本熵、方差、平均绝对误差、四分位差、短时标准偏差、长时标准偏差以及短时标准偏差/长时标准偏差;/nd利用序列前向选择算法选择最佳特征;/ne应用支持向量机分类器基于最佳特征进行分类,进而得到人机不同步分类结果。/n

【技术特征摘要】
1.基于多尺度小波特征的机械通气无效吸气努力识别方法,其特征在于,所述方法包括以下步骤:
a读取呼吸波形数据,对其进行预处理,首先通过寻找流速波形第一个过零点来确定呼气开始点,并认为该点到呼气结束为该次呼吸的呼气相,选取呼气相作为分析对象;然后通过去除呼气相波形中线性趋势来消除数据偏移对后期计算的影响;
b通过离散小波变换对呼气相流速波形进行N层分解;
c对各层小波系数进行特征提取,包括模糊熵、近似熵、样本熵、方差、平均绝对误差、四分位差、短时标准偏差、长时标准偏差以及短时标准偏差/长时标准偏差;
d利用序列前向选择算法选择最佳特征;
e应用支持向量机分类器基于最佳特征进行分类,进而得到人机不同步分类结果。


2.如权利要求1所述的基于多尺度小波特征的机械通气无效吸气努力识别方法,其特征在于,所述步骤a中,呼吸波形数据由专业医生进行标注,然后提取所有无效吸气努力波形,并随机挑选相同数目的非无效吸气努力波形,从而对数据集进行了样本均衡,使得模型更容易训练。


3.如权利要求1或2所述的基于多尺度小波特征的机械通气无效吸气努力识别方法,其特征在于,所述步骤b中,选用‘db5’小波基函数对呼吸流速波形进行分解得到若干个细节信号和近似信号,分解层数N取5-8之间,采样点个数为M,则最大分解层数应满足以下条件:
Nmax≤log2M
其中Nmax为最大分解层数,M为采样点个数;
连续信号x(t)的小波变换定义如下:



其中a和b分别为尺度因子和平移因子,尺度因子控制小波函数的伸缩,与频率成反比,平移因子控制小波函数的平移,对应于时间;因为输入信号为经过采样处理的离散信号,使用离散小波变换:



离散小波变换实质是对尺度因子和平移因子进行...

【专利技术属性】
技术研发人员:潘清陆云飞葛慧青章灵伟龚强刘其杰方路平
申请(专利权)人:浙江工业大学
类型:发明
国别省市:浙江;33

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1