一种从高含硫热滤渣中回收贵金属的高效、低成本清洁工艺制造技术

技术编号:25031858 阅读:69 留言:0更新日期:2020-07-29 05:26
本发明专利技术公开了一种从高含硫热滤渣中回收贵金属的高效、低成本清洁工艺,其通过在加热的条件下促使碱与热滤渣中的硫单质充分反应,最终使硫单质转变为水溶性较好的硫化钠、硫代硫酸钠和亚硫酸钠。化学性质较为稳定的金属以单质的形式存在,另外一部分金属则会与体系中的硫离子发生反应,生成难溶于水的金属硫化物富集在固相中,实现贵金属回收。反应后液相中硫化钠烘干后可作为浮选用硫化剂,并在Cu‑Mo分离浮选过程中具有比硫化钠更佳的脱药效果,使反应的副产物得到了很好的应用,避免了副产物对环境危害。更为重要的是,本发明专利技术是在较为简单的反应条件和较短的反应时间基础上,使贵金属得到回收,工艺更为简化,成本更低。

【技术实现步骤摘要】
一种从高含硫热滤渣中回收贵金属的高效、低成本清洁工艺
本专利技术涉及湿法冶金及固废处理
,尤其涉及一种高效、低成本的从高含硫热滤渣中回收贵金属的清洁工艺。
技术介绍
目前,世界上大部分的锌金属都是通过湿法冶金的方法生产出来的。然而生产过程中往往会产生大量的冶炼废渣(参考文献:CHENY,TANGM,YANGS,etal.NoveltechniqueofdecompositionofammoniumjarositebearingindiuminNaOHmedium[J].TheChineseJournalofNonferrousMetals,2009,7:028.)。以热滤渣为例,其是在硫精矿制备硫磺过程中产生的废渣,在该部分热滤渣中除含有大量的硫单质外,还有一定量的Au、Ag和In等贵金属。对于该办法热滤渣当下的处理方法主要是将其堆积处理,但该方法会产生高昂的费用。同时,若长期堆积,其中的贵金属又会进入至地下水中,不仅对生态环境造成了破环,也会造成有价金属资源的浪费。因此如何从热滤渣中回收贵金属一直是目前研究的难题。2017年聂子云的研究中指出,金川公司高含硫冶炼废渣可以通过浮选的方法将硫富集在精矿中,同时将其中的有价金属富集在尾矿中。但是该方法对于硫含量过高,且贵金属大部分均被硫单质包裹在颗粒物中的热滤渣而言,使用浮选的方法难以将贵金属实现回收(参考文献:聂子云.高含硫金属废渣中分离单质硫实验研究[J].甘肃科技,2017,33(15):26-29.)。此外,LeiTang等人还报道了在高温还原性体系下除硫并回收贵金属的技术,但该方法需要将体系温度提高至1300℃,成本较高(参考文献:TangL,TangC,XiaoJ,etal.Acleanerprocessforvaluablemetalsrecoveryfromhydrometallurgicalzincresidue[J].Journalofcleanerproduction,2018,201:764-773.)。因此,为避免资源的浪费和对环境的污染,开发一种高效、低成本的从高含硫热滤渣中回收贵金属的清洁工艺对于冶炼企业极为重要。
技术实现思路
本专利技术要解决的技术问题是提供一种对于富集含硫量较高的冶炼废渣中的贵金属具有较好的回收效果,操作简单、成本低,且无三废产生,解决了高含硫冶炼废渣中贵金属难富集的问题,避免了资源浪费的从高含硫热滤渣中回收贵金属的高效、低成本清洁工艺。为解决上述技术问题,本专利技术采用如下技术方案:一种从高含硫热滤渣中回收贵金属的高效、低成本清洁工艺,其特征在于:所述高含硫热滤渣为高含硫废渣,且硫的赋存形式以硫单质为主,硫单质含量在50%~70%的范围内,回收过程按以下步骤进行,(1)磨矿步骤:将热滤渣磨至-200含量为40~80%的细度;(2)将热滤渣与碱的水溶液按照固液比为1:1~4的浓度混合,并加热至55~85℃进行反应,反应时间为5~75min,化学反应过程为:3S+6NaOH=2Na2S+Na2SO3+3H2O;4S+6NaOH=2Na2S+Na2S2O3+3H2O;(x-1)S+Na2S=Na2Sx(x=2~5);(3)待反应结束后,过滤收集反应后的固相与液相,最终贵金属均富集在固相中。其中,步骤(2)中所使用的碱为氢氧化钠、氢氧化钾、氢氧化钙、氢氧化钡、氢氧化铯中的一种、两种或若干种复配,最佳为氢氧化钠。其中,步骤(2)中碱的浓度为10~50%,较佳为35~40%,最佳为37.5%。较佳地,在步骤(2)中,加热至85℃进行反应15min。还可以在80℃~100℃的条件下,将步骤(2)反应时产生的液相中含有的大量硫化钠与多硫化钠完全烘干,得到可用于矿物浮选过程的调整剂,进一步提高回收利用价值。本专利技术通过在加热的条件下促使碱与热滤渣中的硫单质充分反应,最终使硫单质转变为水溶性较好的硫化钠、硫代硫酸钠和亚硫酸钠。对于Au、Ag和In等贵金属而言,一部分化学性质较为稳定的金属依旧以单质的形式存在,而对于另外一部分金属则会与体系中存在的硫离子发生反应,生成难溶于水的金属硫化物,最终均富集在固相中,实现了资源的综合回收,避免了贵金属的浪费。另外,反应后的液相中由于存在大量的硫化钠,该部分液体还可以烘干后作为浮选用硫化剂使用,并在Cu-Mo分离浮选过程中具有比硫化钠更佳的脱药效果。不仅使反应产生的副产物得到了很好的应用,降低了对反应副产物的处理成本,同时还避免了副产物对环境危害。更为重要的是,本专利技术是在较为简单的反应条件和较短的反应时间基础上,将高含硫热滤渣中的贵金属得到了有效的富集。该工艺相对传统工艺大为简化,不仅节约了生产成本,同时还避免了资源的浪费。附图说明图1为现有技术采用硫浮选方法的工艺流程图;图2为液相蒸干后固体在Cu-Mo分离浮选过程中的应用流程工艺图。具体实施方式下面结合附图通过具体实施例对本专利技术做进一步说明:本实施例中所针对的热滤渣中金的品位为4.56g/t,银的品位为52.39g/t,铟的品位为700g/t,硫的品位为68.51%。试验中所用水均为自来水。一、对比例:本对比例为现有技术采用硫浮选方法的对比实验,硫浮选实验过程严格按照图1所示进行。称取矿粉400g,在62.5%的矿浆浓度下磨矿5min使矿物颗粒<200目的比例为65%,进行浮选实验。将矿浆转移至XFD型1.5L浮选槽内搅拌2min,依次加入捕收剂和起泡剂后各匀浆2min开始通气浮选。在1.5L的浮选槽内粗选6min。将得到精矿K制样分析,剩余矿浆继续添加捕收剂,内搅拌2min后开始通气浮选,浮选时间为2分钟,将得到中矿制样分析,剩余矿浆为X制样分析,结果如表1所示。二、本专利技术的工艺过程如下:称取500g已经磨至-200目含量为60%(40~80%均可)细度的热滤渣粉末样,加入到2L浓度为37.5%的氢氧化钠溶液中,加热至85℃,搅拌反应15min。待反应结束后,过滤。并且收集过滤后的固体样,烘干后制样分析,结果如表2所示。表1热滤渣浮选结果表2本专利技术方法处理热滤渣后固体样的实验结果通过表1的实验结果可以看出使用传统浮选方法处理冶炼渣时,尾矿中硫的含量降低至23.68%,同时银的品位提高了25.78g/t。但对于金而言,尾矿中的品位反而降低了3.03g/t,并且精矿和中矿中的品位几乎与原矿中金的品位持平。对于铟而言,无论是在精矿、中矿,还是尾矿中,均为得到有效的富集。总体而言,使用硫浮选的方法处理热滤渣时,其中贵金属的富集效果较差。当按照本专利技术的方法处理热滤渣后(表2),金的品位提高了5.16g/t,银的品位提高了78.5%,铟的品位提高了1000g/t。同时硫的品位降低了48.9%。这说明使用本专利技术的方法能够有效的降低热滤渣中的硫含量,从而使其中的贵金属得到了有效的富集。三、反应副产物应用:反应所得液相本文档来自技高网
...

【技术保护点】
1.一种从高含硫热滤渣中回收贵金属的高效、低成本清洁工艺,其特征在于:所述高含硫热滤渣为高含硫废渣,且硫的赋存形式以硫单质为主,硫单质含量在50%~70%的范围内,回收过程按以下步骤进行,/n(1)磨矿步骤:将热滤渣磨至-200含量为40~80%的细度;/n(2)将热滤渣与碱的水溶液按照固液比为1:1~4的浓度混合,并加热至55~85℃进行反应,反应时间为5~75min,化学反应过程为:/n3S+6NaOH=2Na

【技术特征摘要】
1.一种从高含硫热滤渣中回收贵金属的高效、低成本清洁工艺,其特征在于:所述高含硫热滤渣为高含硫废渣,且硫的赋存形式以硫单质为主,硫单质含量在50%~70%的范围内,回收过程按以下步骤进行,
(1)磨矿步骤:将热滤渣磨至-200含量为40~80%的细度;
(2)将热滤渣与碱的水溶液按照固液比为1:1~4的浓度混合,并加热至55~85℃进行反应,反应时间为5~75min,化学反应过程为:
3S+6NaOH=2Na2S+Na2SO3+3H2O;
4S+6NaOH=2Na2S+Na2S2O3+3H2O;
(x-1)S+Na2S=Na2Sx(x=2~5);
(3)待反应结束后,过滤收集反应后的固相与液相,最终贵金属均富集在固相中。


2.根据权利要求1所述的从高含硫热滤渣中回收贵金属的高效、低成本清洁工艺,其特征在于:步骤(2)中所使用的碱为氢氧化钠、氢氧化钾、氢氧化钙、氢氧化钡、氢氧化...

【专利技术属性】
技术研发人员:田晓东谢兰馨孔德鸿马松勃王铧泰刘远赖春华廖园园解万文屈胜贾雄武
申请(专利权)人:西部矿业股份有限公司西部矿业股份有限公司锌业分公司西部矿业集团科技发展有限公司青海西部矿业工程技术研究有限公司
类型:发明
国别省市:青海;63

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1