本发明专利技术公开了一种基于联邦学习的移动边缘环境下安全QoS预测方法。该方法首先收集边缘位置信息和QoS数据集,融合后得到时‑空边缘用户QoS数据集;然后对边缘区域进行划分和提取公有数据集,并将公有模型训练和个性化预测相结合从而达到安全的目的。在公有模型训练过程中,考虑边缘服务器和市辖区的地理位置分布,将整个边缘网络区域划分为多个边缘区域,每个边缘区域对应若干个市辖区。每个边缘区域进行公有数据提取后基于LSTM进行公有模型训练并将公有权值参数传递给私有用户。在个性化预测过程中,用户使用其所属区域中的公有LSTM权重参数作为私有LSTM的初始参数,并根据用户的私有数据不断训练私有LSTM从而进行个性化预测。
【技术实现步骤摘要】
基于联邦学习的移动边缘环境下安全QoS预测方法
本专利技术涉及一种QoS预测方法,尤其涉及移动边缘环境下安全QoS预测方法,属于信息
技术介绍
SOA(ServiceOrientedArchitecture)是一种应用程序体系结构,在其结构中,所有功能都被定义为独立的服务,Web服务是实现SOA的技术之一,因此行业专家们通过组合这些服务来为用户提供不断变化的需求。近年来随着Web服务的发展,其非功能属性QoS(QualityofService)受到了越来越多的关注,如今网络上出现大量功能相同或相似的Web服务,因此为用户选择满足需求的恰当Web服务显得尤为重要。另一方面,随着5G时代的到来,移动边缘计算得到了更广泛的应用,由于其位于网络边缘,距离用户或信息源非常邻近,因此可以大大减小响应请求的时延。在移动边缘环境下为用户提供服务响应成为当下的发展趋势,但同时也带来了移动边缘环境下安全性问题。现有的QoS安全研究工作主要聚焦于两方面:QoS隐私保护方法和QoS安全服务。在QoS隐私保护方面,最早有学者提出差分隐私加密算法,随后liu等人将其与协同过滤法结合提出一种QoS隐私保护法。Qi等人在2017年提出一种基于局部敏感哈希的分布式推荐系统。Shahriar等人提出一种属性值加密和位置隐藏的保护协议。可见,现有QoS隐私保护方法多适用静态环境,且数据加密后有损预测精度。另一方面,由于在边缘环境下用户通过访问彼此历史数据来预测,因此随着交互次数的增加,数据加密规则更容易被破解。在QoS安全服务方面,研究人员提出了多种安全机制和准则。Shen等人同时考虑了安全性和服务质量,提出了一种分布式动态管理系统机制,但该机制只适用于特定的环境中(如:网络流量为轻量级时)。Alessandro等提出了一种集成的工具支持方法,可在安全性和质量之间达到最大权衡,但该方法未考虑动态环境下的变化情况。Jalal等使用一种分布式实时环境下安全性QoS优化方法在机密性、完整性和认证安全性之间达成协议,但该方法多运用于IP路由协议。Charuenporn等提出了一种新的QoS安全度量开发范式,然而,该范式只适用于两个已定义的信息系统标准(COBIT和ITIL)。随着技术的发展,在越来越多的预测方法中用户的隐私信息被大量获取,安全成为预测过程中用户的一大需求。
技术实现思路
专利技术目的:考虑移动边缘环境下传统方法不适用且预测精度大大降低以及用户对安全性的需求,本专利技术提供一种基于联邦学习的移动边缘环境下安全QoS预测方法,通过融合数据集的方式得到时-空边缘用户QoS数据集,并采用公有模型训练和个性化预测的方式从根本上消除被破解的可能从而保证安全性。同时,运用LSTM模型动态更新权值参数提高预测精度,从而在保证安全的同时,达到有效和准确预测的目的。技术方案:为实现上述专利技术目的,本专利技术所述的一种基于联邦学习的移动边缘环境下安全QoS预测方法,包括如下步骤:步骤1:收集边缘位置信息和QoS数据集;步骤2:以用户ID号为连接对QoS数据和边缘位置点进行融合;步骤3:融合后得到时-空边缘用户QoS数据集;步骤4:考虑边缘服务器和市辖区的地理位置分布,将原始的边缘网络区域划分为多个边缘区域,并进行公有数据集提取;步骤5:利用各边缘区域的公有数据集基于LSTM进行公有数据训练得到公有模型;步骤6:将用户所属区域中的公有LSTM权值参数作为私有LSTM的初始参数,并根据私有数据不断训练私有LSTM从而进行个性化预测。作为优选,所述步骤1中收集数据主要包括两个方面:包含用户ID、服务ID、时间段ID和属性值的QoS数据集;包含经度纬度信息的基站数据集。作为优选,所述步骤2包括如下步骤:步骤21:以用户ID、时间段ID、服务ID和属性值的顺序整理QoS数据集;步骤22:根据步骤21中用户的总数量在基站数据集中随机选取相应数量的边缘位置点并进行ID编号;步骤23:统计边缘位置点的经纬度信息,通过地图服务定位基站的位置点;步骤24:QoS数据集中的用户总数量和边缘服务器的总数量是相等的,因此以用户ID为连接将两个数据集进行融合。作为优选,所述步骤3包括如下步骤:步骤31:统计融合后数据集的总时间段数和形成的总边缘服务器个数;步骤32:总时间段简称为“时”,总边缘服务器简称为“空”,融合后得到时-空边缘用户QoS数据集。作为优选,所述步骤4包括如下步骤:步骤41:考虑边缘服务器和市辖区的地理位置分布,将整个边缘网络区域划分为k个边缘区域,每个边缘区域对应1-4个市辖区,其中k≥2,由边缘服务器的地理分布决定;步骤42:取出各边缘区域T1时间段内的所有用户调用所有服务的属性值,并以服务-用户二维矩阵的形式表示;逐一取二维矩阵中每行数据的中位数,得到一个服务-T1列向量,把该列向量作为T1时间段调用的服务的属性值的公有数据;步骤43:依次取T2、…、Tn时间段所有用户调用所有服务的属性值,重复步骤42,得到服务-T2、…、服务-Tn列向量,其中n≥2;步骤44:将n个列向量合成形成一个服务-时间段二维矩阵,用于该边缘区域的公有模型训练。作为优选,所述步骤5包括如下步骤:步骤51:每个边缘区域基于各自区域的公有数据集执行LSTM训练;在学习率和训练次数之间达成一种共识,即:学习率越大,误差调整的速度越快,因此在达到同等训练效果时所需执行的训练次数越少;步骤52:将学习率和训练次数设为公有模型训练的一组组合参数,由于学习率和训练次数之间的负相关关系,因此当学习率取值增大时,训练次数取值逐渐减小;步骤53:通过LSTM中的遗忘门、输入门、当前时刻单元状态和输出门计算最后的输出,并计算均方根误差值来估量损失函数;步骤54:对损失函数求导不断调整权值参数;随着训练迭代次数的增加,训练误差不断减小,为个性化预测提供最佳初始权值参数。作为优选,所述步骤6在个性化预测过程中,基于用户不断产生的私有数据每隔一个时间间隔便执行一次LSTM训练,从而不断更新权值参数以满足边缘环境对数据实时性和准确度的要求,实现边缘环境下安全QoS属性值预测。作为优选,所述步骤6包括如下步骤:步骤61:用户根据公有LSTM中传递的初始权值参数进行QoS预测;步骤62:完成一个时间段的预测后,根据预测数据与实际QoS数据的偏差调整模型权值参数;步骤63:判断下一时间段是否有新数据产生,若有便将最新权值参数传递给该时间段的模型预测中,并执行训练,从而进一步调整权值参数;以此往复直至不再产生新数据,实现实时的个性化预测。有益效果:与现有技术相比,本专利技术提供的一种基于联邦学习的移动边缘环境下安全QoS预测方法,一方面通过将公有模型训练和个性化预测相结合的方式解决了传统加密方式在边缘环境下易被破解的弊端,另一方面在保证安全性的同时,通过不断更新权值参数的方式保证了本文档来自技高网...
【技术保护点】
1.一种基于联邦学习的移动边缘环境下安全QoS预测方法,其特征在于,包括如下步骤:/n步骤1:收集边缘位置信息和QoS数据集;/n步骤2:以用户ID号为连接对QoS数据和边缘位置点进行融合;/n步骤3:融合后得到时-空边缘用户QoS数据集;/n步骤4:考虑边缘服务器和市辖区的地理位置分布,将原始的边缘网络区域划分为多个边缘区域,并进行公有数据集提取;/n步骤5:利用各边缘区域的公有数据集基于LSTM进行公有数据训练得到公有模型;/n步骤6:将用户所属区域中的公有LSTM权值参数作为私有LSTM的初始参数,并根据私有数据不断训练私有LSTM从而进行个性化预测。/n
【技术特征摘要】
1.一种基于联邦学习的移动边缘环境下安全QoS预测方法,其特征在于,包括如下步骤:
步骤1:收集边缘位置信息和QoS数据集;
步骤2:以用户ID号为连接对QoS数据和边缘位置点进行融合;
步骤3:融合后得到时-空边缘用户QoS数据集;
步骤4:考虑边缘服务器和市辖区的地理位置分布,将原始的边缘网络区域划分为多个边缘区域,并进行公有数据集提取;
步骤5:利用各边缘区域的公有数据集基于LSTM进行公有数据训练得到公有模型;
步骤6:将用户所属区域中的公有LSTM权值参数作为私有LSTM的初始参数,并根据私有数据不断训练私有LSTM从而进行个性化预测。
2.根据权利要求1所述的基于联邦学习的移动边缘环境下安全QoS预测方法,其特征在于,所述步骤1中收集数据主要包括两个方面:包含用户ID、服务ID、时间段ID和属性值的QoS数据集;包含经度纬度信息的基站数据集。
3.根据权利要求1所述的基于联邦学习的移动边缘环境下安全QoS预测方法,其特征在于,所述步骤2包括如下步骤:
步骤21:以用户ID、时间段ID、服务ID和属性值的顺序整理QoS数据集;
步骤22:根据步骤21中用户的总数量在基站数据集中随机选取相应数量的边缘位置点并进行ID编号;
步骤23:统计边缘位置点的经纬度信息,通过地图服务定位基站的位置点;
步骤24:QoS数据集中的用户总数量和边缘服务器的总数量是相等的,因此以用户ID为连接将两个数据集进行融合。
4.根据权利要求1所述的基于联邦学习的移动边缘环境下安全QoS预测方法,其特征在于,所述步骤3包括如下步骤:
步骤31:统计融合后数据集的总时间段数和形成的总边缘服务器个数;
步骤32:总时间段简称为“时”,总边缘服务器简称为“空”,融合后得到时-空边缘用户QoS数据集。
5.根据权利要求1所述的基于联邦学习的移动边缘环境下安全QoS预测方法,其特征在于,所述步骤4包括如下步骤:
步骤41:考虑边缘服务器和市辖区的地理位置分布,将整个边缘网络区域划分为k个边缘区域,每个边缘区域对应1-4个市辖区,其中k≥2,由边缘服务器的地理分布决定;
步骤42...
【专利技术属性】
技术研发人员:金惠颖,张鹏程,吉顺慧,李清秋,张雅玲,魏芯淼,
申请(专利权)人:河海大学,
类型:发明
国别省市:江苏;32
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。