当前位置: 首页 > 专利查询>四川大学专利>正文

一种基于演化卷积神经网络的人脸识别方法技术

技术编号:24889623 阅读:36 留言:0更新日期:2020-07-14 18:16
本发明专利技术公开了一种基于演化卷积神经网络的人脸识别方法,采用遗传算法优化卷积神经网络的体系结构设计和连接权重初始化,通过不断演化寻找最佳的神经网络,进而减少网络架构设计中对人工经验的依赖。本发明专利技术采用可变长度基因编码策略对卷积神经网络进行编码,提高卷积神经网络结构的多样性,为了让变长的染色体进行交叉,采用结构单元对应位置分别交叉再复原的方法,实现长度不一致的染色体的交叉操作。本发明专利技术在环境选择环节,先进行精英选择,种群余下的个体进行两组适应度的比较然后选择,既保证了精英性又具有多样性。

【技术实现步骤摘要】
一种基于演化卷积神经网络的人脸识别方法
本专利技术属于人脸识别领域,具体涉及一种基于演化卷积神经网络的人脸识别方法。
技术介绍
人脸识别是指能够识别或者验证图像或视频中的主体的身份的技术,相比于传统识别方法例如指纹或虹膜识别,人脸识别被认为是更加稳健的生物识别方法。人脸识别本质上是非侵入性的,不像指纹、虹膜识别需要用户高度配合,人脸识别对用户很友好。因此,人脸识别的潜在应用范围更广,因为它也可被部署在用户不期望与系统合作的环境中,比如监控系统中。除此之外,人脸识别技术目前还广泛应用于访问控制、欺诈检测、身份认证和社交媒体等。传统方法依赖于人工设计的特征(比如边和纹理描述量)与机器学习技术(比如主成分分析、线性判别分析或支持向量机)的组合。人工设计在无约束环境中对不同变化情况提取稳健的特征很困难,研究者需要侧重研究针对每种变化类型的专用方法。基于卷积神经网络的深度学习方法成为目前人脸识别技术的主要方法,但是神经网络的架构设计颇具挑战性,构建一个拥有很好识别功能的神经网络强烈依赖人工经验,这些人工经验来自无数专业人员对处理任务以及神经网络模型多年研究成果的共同积累。然而这些行业大量匮乏此类专业人员,这导致基于卷积神经网络的深度学习方法很难独立实现。
技术实现思路
针对现有技术中的上述不足,本专利技术提供的一种基于演化卷积神经网络的人脸识别方法解决了现有技术依赖人工的问题。为了达到上述专利技术目的,本专利技术采用的技术方案为:一种基于演化卷积神经网络的人脸识别方法,包括以下步骤:S1、根据变长编码策略,通过间接编码方法生成N个卷积神经网络结构,得到初始化种群,并设置迭代计数器t=1和最大迭代次数T;S2、对初始化种群中每个个体进行训练,并使用人脸数据进行适应度评估,根据适应度评估结果选择N个父本;S3、使用二进制交叉算法对父本进行交叉,获取N个子代,将N个父本和N个子代合并为混合种群,对混合种群中个体进行变异操作;S4、对混合种群中个体进行适应度评估,并根据混合种群的适应度评估结果,对混合种群施加环境选择,从混合种群中选出N个新个体;S5、判断t是否等于T,若是,则进入步骤S6,否则将步骤S4中N个新个体作为父本,令t的计数值加一,并返回步骤S3;S6、在N个新个体中选择适应度最佳的个体网络,将待检测人脸图像输入适应度最佳的个体网络,得到人脸识别结果。进一步地,所述步骤S1中根据变长编码策略,通过间接编码方法生成N个卷积神经网络结构,得到初始化种群的具体步骤为:A1、设定最大卷积层数为a、最大池化层数为b和最大全连接层数为c;A2、将一个卷积层作为卷积神经网络结构的输入层,在输入层后依次随机添加卷积层或池化层,并设置卷积层的卷积核大小或设置池化层的过滤器大小;A3、判断卷积层数目是否小于a且池化层数目是否小于b,若是,则返回步骤A2,否则进入步骤A4;A4、判断卷积层数目是否为a,若是,添加池化层至其数目为b,并设置卷积层的卷积核大小,否则添加卷积层至其数目为a,并设置池化层的过滤器大小;A5、添加c+1个顺序连接的全连接层,并在每个卷积层后插入一个批归一化层;A6、在最后一个全连接层后添加一个dropout层,得到初始卷积神经网络结构;A7、根据步骤A1-A6所述的方法生成N个初始卷积神经网络结构,通过间接编码方法对初始卷积神经网络结构进行编码,得到初始化种群。进一步地,所述步骤A7中通过间接编码方法对初始卷积神经网络结构进行编码的具体方法为:通过间接编码对初始卷积神经网络结构中卷积层、池化层和全连接层进行编码;所述卷积层的编码信息为:过滤器宽度、过滤器高度、特征图数目、步幅宽度、步幅高度、卷积类型、标准差以及过滤器参数平均值;所述池化层的编码信息为:内核宽度、内核高度、步幅宽度、步幅高度以及池化类型,所述池化类型为最大池化或平均池化;所述全连接层的编码信息为:神经元数目、连接权重标准差以及连接权重的平均值。进一步地,对初始化种群中每个个体进行训练,并使用人脸数据进行适应度评估的具体方法为:B1、采集若干大小相同的人脸图像数据,并将人脸图像数据按7:3划分为训练集和验证集;B2、采用人工标记的方法对训练集中人脸图像数据进行人脸标记,得到样本标签;B3、设置训练步数为30和学习率为0.0001,每一步训练遍历所有训练数据,将训练集中人脸图像数据依次送入个体中,并计算个体的预测输出与样本标签之间的损失函数值,以损失函数值最小为目标,采用Adam算法对个体参数进行优化;B4、令采用步骤B2-步骤B3所述的方法,对初始化种群中每个个体进行训练;B5、将验证集分别输入训练后的每个个体,并计算准确率和复杂度,根据准确率和复杂度获取适应度;所述适应度等于准确率减去复杂度。进一步地,所述步骤B4中准确率计算步骤为:选择个体输出的每个人脸的预测概率,选择最高概率的类别作为预测类别,并判断预测类别与对应人脸图像数据的真实类别是否相同,若是,则记为1,否则记为0,根据个体对验证集中人脸图像数据预测结果获取准确率,所述准确率P的具体计算公式为:其中,n表示个体对验证集中人脸图像数据类别预测正确的个数,m表示验证集中人脸图像数据的总个数。进一步地,所述步骤B4中复杂度Pcomplexity为个体的参数数量。进一步地,所述步骤S2中根据适应度评估结果选择N个父本的具体方法为:C1、设置第一阈值α和第二阈值β;C2、从训练后的初始化种群中随机选择2个个体,并判断2个个体的准确率的差值是否大于α,若是,则选择准确率较大的个体作为父本,否则进入步骤C3;C3、判断选出的2个个体复杂度差值是否小于β,若是,则选择准确率较大的个体作为父本,否则选择复杂度较小的个体作为父本;C4、使用步骤C2-步骤C3所述的方法,选择得到N个父本。进一步地,所述S3包括以下分步骤:S3.1、根据父本中网络结构层的排列顺序,将卷积层、池化层和全连接层按照排列的先后顺序分别放入三个列表中;S3.2、采用步骤S3.1所述方法得到每个父本的三个列表;S3.3、随机选择两个父本,将两个父本的按照卷积层、池化层和全连接层这三种类别进行两两对应,并且对应的两个列表的首部对齐;S3.4、交换对应的两个列表中相同位置的网络结构层,并将交换后的网络结构层按原网络结构的取出顺序放入对应的父本中;S3.5、使用步骤S3.3-步骤S3.4所述的方法遍历所有父本,得到N个子代;S3.6、将N个父本和N个子代合并为混合种群;S3.7、对混合总群中个体进行增加、删除或修改操作,完成对混合种群中个体进行变异操作。进一步地,所述增加操作为:分别设置卷积层、池化层和全连接层的最大增加数目,随机在卷积层、池化层或全连接层前增加一个相同的网络结构层,直至卷积层、池化层和全连接层的增加数目分别达到其最本文档来自技高网...

【技术保护点】
1.一种基于演化卷积神经网络的人脸识别方法,其特征在于,包括以下步骤:/nS1、根据变长编码策略,通过间接编码方法生成N个卷积神经网络结构,得到初始化种群,并设置迭代计数器t=1和最大迭代次数T;/nS2、对初始化种群中每个个体进行训练,并使用人脸数据进行适应度评估,根据适应度评估结果选择N个父本;/nS3、使用二进制交叉算法对父本进行交叉,获取N个子代,将N个父本和N个子代合并为混合种群,对混合种群中个体进行变异操作;/nS4、对混合种群中个体进行适应度评估,并根据混合种群的适应度评估结果,对混合种群施加环境选择,从混合种群中选出N个新个体;/nS5、判断t是否等于T,若是,则进入步骤S6,否则将步骤S4中N个新个体作为父本,令t的计数值加一,并返回步骤S3;/nS6、在N个新个体中选择适应度最佳的个体网络,将待检测人脸图像输入适应度最佳的个体网络,得到人脸识别结果。/n

【技术特征摘要】
1.一种基于演化卷积神经网络的人脸识别方法,其特征在于,包括以下步骤:
S1、根据变长编码策略,通过间接编码方法生成N个卷积神经网络结构,得到初始化种群,并设置迭代计数器t=1和最大迭代次数T;
S2、对初始化种群中每个个体进行训练,并使用人脸数据进行适应度评估,根据适应度评估结果选择N个父本;
S3、使用二进制交叉算法对父本进行交叉,获取N个子代,将N个父本和N个子代合并为混合种群,对混合种群中个体进行变异操作;
S4、对混合种群中个体进行适应度评估,并根据混合种群的适应度评估结果,对混合种群施加环境选择,从混合种群中选出N个新个体;
S5、判断t是否等于T,若是,则进入步骤S6,否则将步骤S4中N个新个体作为父本,令t的计数值加一,并返回步骤S3;
S6、在N个新个体中选择适应度最佳的个体网络,将待检测人脸图像输入适应度最佳的个体网络,得到人脸识别结果。


2.根据权利要求1所述的基于演化卷积神经网络的人脸识别方法,其特征在于,所述步骤S1中根据变长编码策略,通过间接编码方法生成N个卷积神经网络结构,得到初始化种群的具体步骤为:
A1、设定最大卷积层数为a、最大池化层数为b和最大全连接层数为c;
A2、将一个卷积层作为卷积神经网络结构的输入层,在输入层后依次随机添加卷积层或池化层,并设置卷积层的卷积核大小或设置池化层的过滤器大小;
A3、判断卷积层数目是否小于a且池化层数目是否小于b,若是,则返回步骤A2,否则进入步骤A4;
A4、判断卷积层数目是否为a,若是,添加池化层至其数目为b,并设置卷积层的卷积核大小,否则添加卷积层至其数目为a,并设置池化层的过滤器大小;
A5、添加c+1个顺序连接的全连接层,并在每个卷积层后插入一个批归一化层;
A6、在最后一个全连接层后添加一个dropout层,得到初始卷积神经网络结构;
A7、根据步骤A1-A6所述的方法生成N个初始卷积神经网络结构,通过间接编码方法对初始卷积神经网络结构进行编码,得到初始化种群。


3.根据权利要求2所述的基于演化卷积神经网络的人脸识别方法,其特征在于,所述步骤A7中通过间接编码方法对初始卷积神经网络结构进行编码的具体方法为:通过间接编码对初始卷积神经网络结构中卷积层、池化层和全连接层进行编码;
所述卷积层的编码信息为:过滤器宽度、过滤器高度、特征图数目、步幅宽度、步幅高度、卷积类型、标准差以及过滤器参数平均值;
所述池化层的编码信息为:内核宽度、内核高度、步幅宽度、步幅高度以及池化类型,所述池化类型为最大池化或平均池化;
所述全连接层的编码信息为:神经元数目、连接权重标准差以及连接权重的平均值。


4.根据权利要求1所述的基于演化卷积神经网络的人脸识别方法,其特征在于,对初始化种群中每个个体进行训练,并使用人脸数据进行适应度评估的具体方法为:
B1、采集若干大小相同的人脸图像数据,并将人脸图像数据按7:3划分为训练集和验证集;
B2、采用人工标记的方法对训练集中人脸图像数据进行人脸标记,得到样本标签;
B3、设置训练步数为30和学习率为0.0001,每一步训练遍历所有训练数据,将训练集中人脸图像数据依次送入个体中,并计算个体的预测输出与样本标签之间的损失函数值,以损失函数值最小为目标,采用Adam算法对个体参数进行优化;
B4、令采用步骤B2-步骤B3所述的方法,对初始化种群中每个个体...

【专利技术属性】
技术研发人员:孙亚楠李思毅
申请(专利权)人:四川大学
类型:发明
国别省市:四川;51

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1